Skip to main content

Photon Transport in Phototropic Organisms

  • Chapter
  • 452 Accesses

Abstract

Phototropism can be defined as a change of the direction of growth of certain plants as caused by unilateral stimuli of light. Most organisms exhibiting phototropism are of a cylindrical form. The change in the direction of growth is coupled to differential growth within the plant organ caused by an asymmetric distribution of photon fluxes within the cylindrical organism.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

Xw(φ), yw(φ):

parameter representation for the wavefronts

Xc(φ), yc(φ):

parameter representation for the caustic

Φ:

azimuth of intersection incident ray/cylinder

ℱ:

field of refracted rays given in an implicit form

γi, γo :

angle of incidence and refraction, respectively

χ:

angle enclosed by refracted rays and x-axis

S:

parameter determining a specific wavefront

Θ(φ):

azimuth of intersection refracted ray/cylinder in the image plane

δ:

without argument: phaseshift

A :

transmissivity

K(φ):

expansion coefficient for a bundle of rays

κw(φ):

curvature of the wavefronts

ϱ(φ):

radius of curvature of the caustic

Θ:

Airy function

f(φ):

focusing factor

μ:

angle enclosed of \(\vec E\)-vector of light and plane of incidence

Ic, Id :

coherent and diffuse intensity, respectively

Uċ, Ud :

average coherent and average diffuse intensity, respectively

F⃗:

diffuse flux vector

G :

Greens’ function

Im, Km :

modified Bessel functions of integer order

E:

energy absorbed by a photoreceptor

R:

Response of a biological system

References

  • Bergman K, Burke PV, Cerda-Olmedo E et al. (1969) Phycomyces. Bact Rev 33:99–157

    PubMed  CAS  Google Scholar 

  • Born M, Wolf E (1980) Principles of optics. Pergamon, Oxford, p 170

    Google Scholar 

  • Brinkworth BJ (1972) Interpretation of the kubelka-munk coefficients in reflection theory. Appl Opt 11:1434

    Article  PubMed  CAS  Google Scholar 

  • Burkhard DG, Shealy DL (1981) Simplified formula for the illuminance in an optical system. Appl Opt 20:897

    Article  PubMed  CAS  Google Scholar 

  • Castle FS (1966) A kinetic model for adaptation and the light growth response of phycomyces. J. Gen Phys 49:925–935

    Article  CAS  Google Scholar 

  • Cerda-Olmedo E, Lipson E (eds) (1987) Phycomyces. Cold Spring Harbor Lab, Cold Spring Harbor

    Google Scholar 

  • Curry GM, Gruen HE (1957) Negative phototrophism of Phycomyces in the ultra-violet. Natura (Lond) 179:1028–1029

    Article  CAS  Google Scholar 

  • Dohrmann U (1983) In-vitro riboflavin binding and endogenous flavins in Phycomyces blakesleeanus. Planta 159:357–365

    Article  CAS  Google Scholar 

  • Fukshansky L, Steinhardt AR (1987) Spatial factors in Phycomyces photbtropism: Analysis of balanced responses. J. Theor Biol, 129:301–323

    Article  Google Scholar 

  • Galland P, Lipson E (1985) Action spectra for phototropic balance in Phycomyces blakesleeanus: Dependence on reference wavelength and intensity range. Photochem Photobiol 41:323–329

    Article  PubMed  CAS  Google Scholar 

  • Humphry VR (1956) The effects of paraffin oil on phototropic and geotropic responses in avena coleoptiles. Ann Bot 30:39–45

    Google Scholar 

  • Ishimaru A (1978) Wave propagation and scattering in random media, Vol 1. Academic Press, Lond New York

    Google Scholar 

  • Kline M, Kay IW (1965) Electromagnetic theory and geometrical optics, Chap. 5. Intersci, New York

    Google Scholar 

  • Landau LD, Lifshitz EM (1977) Lehrbuch der theoretischen Physik, Vol II, Chap 59. Academie Verlag, Berlin

    Google Scholar 

  • Lipschutz MM (1969) Differential geometry, Chap 9. McGraw-Hill, New York

    Google Scholar 

  • Massey V, Müller F, Feldberg R (1969) The reactivity of flavoproteins with sulfite. J Biol Chem 244:3999–4006

    PubMed  CAS  Google Scholar 

  • Poe RC et al. (1986) System analysis of Phycomyces light growth response: double mutants. Biol Cybern 55:105

    PubMed  CAS  Google Scholar 

  • Schäfer E, Fukshansky L, Shropshire W Jr (1984) Action spectroscopy of photoreversible pigment systems. In: Shropshire W Jr., Mohr H (eds) Photomorphogenesis. Encycl Plant Physiol, New Ser 16A:358–400, Springer, Berlin Heidelberg New York Tokyo

    Google Scholar 

  • Seyfried M (1984) Spektroskopische Eigenschaften von Phytochrom in vivo. PhD thesis, Univ Freiburg

    Google Scholar 

  • Shropshire W Jr (1974) Phototropism. In: Schenk GO (ed) Progress in photobiology. Proc 6th Int Congr Photobiol Dtsch Ges Lichtforsch eV, pp 1–6, Springer, Berlin Heidelberg New York

    Google Scholar 

  • Steinhardt AR (1987) Theoretische Untersuchungen zur räumlichen Signalperzeption in phototropisch aktiven Organen. PhD thesis, Univ Freiburg

    Google Scholar 

  • Steinhardt AR, Fukshansky L (1985) Diffusion approximation for scattering in a cylinder: Optics of phototropism. J Opt Soc Am A, 2:1725–1734

    Article  Google Scholar 

  • Steinhardt AR, Fukshansky L (1987) Geometrical optics approach to the intensity distribution in finite cylindrical media. Appl Opt 26:3778–3789

    Article  PubMed  CAS  Google Scholar 

  • Steinhardt AR, Shropshire W Jr, Fukshansky L (1987) Invariant properties of absorption profiles in sporangiophores of phycomyces under balancing bilateral illumination. Photochem Photobiol 45:515–523

    Article  CAS  Google Scholar 

  • Steinhardt AR, Popescu T, Fukshansky L (1989) Is the dichroic photoreceptor for Phycomyces phototropism located at the plasma membrane or at the tonoplast? Photochem Photobiol 49:79–87

    Article  Google Scholar 

  • Strubecker K (1964) Differentialgeometrie. Gruyter, Berlin, 1:69

    Google Scholar 

  • Zankel KL, Burke PV, Delbrück M (1967) Absorption and screening in Phycomyces. J Gen Physiol 50:1893–1906

    Article  PubMed  CAS  Google Scholar 

  • Ziegler H (1950) Inversion phototropischer reaktionen. Planta 38:474–498

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Steinhardt, A.R. (1991). Photon Transport in Phototropic Organisms. In: Myneni, R.B., Ross, J. (eds) Photon-Vegetation Interactions. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-75389-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-75389-3_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-75391-6

  • Online ISBN: 978-3-642-75389-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics