Skip to main content

Control and Co-Ordination of Gas Exchange in Bimodal Breathers

  • Chapter
Vertebrate Gas Exchange

Part of the book series: Advances in Comparative and Environmental Physiology ((COMPARATIVE,volume 6))

Abstract

The ability to exchange respiratory gases effectively in either air or water has been exploited by a wide variety of amphibious vertebrates. The partitioning of O2 and CO2 transfer between aerial and aquatic exchange sites is a function of the exchange organs’ surface area, blood-to-medium diffusion distances and ventilation-perfusion ratios (see Piiper, this Vol.). In addition, the physical properties of water and air place different demands on the respiratory organs (Dejours 1981; Piiper 1982), and this is thought to have had important consequences, during evolution, on the design and performance of gas exchange organs in bimodal breathers (Johansen 1970; Randall et al. 1981; Shelton and Boutilier 1982; Shelton et al. 1986). It is generally accepted that a major selective force in the evolution of the air-breathing habit was aquatic hypoxia (Packard 1974), enabling those animals with air-breathing organs to remain in the warm, O2-deficient waters that are thought to have existed in the Upper Devonian (Inger 1957). Indeed, the intermittent use of air-breathing organs by extant vertebrates is indicative of this, where constraints on aquatic gas exchange lead to a periodic need for supplemental forms of gas exchange.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ackerman RA, White FN (1979) Cyclic carbon dioxide exchange in the turtle Pseudemys scripts Physiol Zool 52: 378–389

    Google Scholar 

  • Andersson M (1978) Optimal foraging area: size and allocation of search effort. Theor Popul Biol 13: 397–409

    Article  PubMed  CAS  Google Scholar 

  • Andresen JH, Ishimatzu A, Johansen K, Glass ML (1987) An angiocardiographic analysis of the central circulation in the air breathing teleost, Channa argus. Acta Zool (Stockh) 68: 165–171

    Article  Google Scholar 

  • Ballintijn CM, Hughes GM (1965) The muscular basis of the respiratory pumps in the trout. J Exp Biol 43: 349–362

    Google Scholar 

  • Belkin DA (1968) Aquatic respiration and underwater survival of two freshwater turtles species. Respir Physiol 4: 1–14

    Article  PubMed  CAS  Google Scholar 

  • Berg T, Steen JB (1965) Physiological mechanisms for aerial respiration in the eel. Comp Biochem Physiol 15: 469–484

    Article  PubMed  CAS  Google Scholar 

  • Bennett AF (1978) Activity metabolism in the lower vertebrates. Annu Rev Physiol 400: 447–469

    Article  Google Scholar 

  • Bennett AF, Houck LD (1983) The energetic cost of courtship and aggression in a plethodontid salamander. Ecology 64: 679–683

    Article  Google Scholar 

  • Bevan DJ, Kramer DL (1986) The effect of swimming depth on respiratory behaviour of the honey gourami, Colisa chuna ( Pisces, Belontiidae). Can J Zool 64: 1893–1896

    Google Scholar 

  • Bevan DJ, Kramer DL (1987) The respiratory behaviour of an air-breathing catfish, Clarias macrocephalus ( Clariidae ). Can J Zool 65: 348–353

    Google Scholar 

  • Bidani A, Crandall ED (1988) Velocity of CO2 exchanges in the lungs. Annu Rev Physiol 50: 639–652

    Article  PubMed  CAS  Google Scholar 

  • Binet L, Bochet M (1963) Resistance a l’hyperoxie de la grenouille Rana esculenta maintenue dans l’oxygene a 100 pourcent durant 52 jours. J Physiol (Paris) 55: 405–412

    CAS  Google Scholar 

  • Boutilier RG (1984) Characterization of the intermittent breathing pattern in Xenopus laevis. J Exp Biol 110: 291–309

    PubMed  CAS  Google Scholar 

  • Boutilier RG (1988) Control of arrhythmic breathing in bimodal breathers: Amphibia. Can J Zool 66: 6–19

    Article  Google Scholar 

  • Boutilier RG (1989) Diving physiology: amphibians. In: Wood SC (ed) Comparative pulmonary physiology: current concepts, vol 39. Lung biology in health and disease. Marcel Dekker, New York, pp 677–695

    Google Scholar 

  • Boutilier RG, Shelton G (1986a) Respiratory properties of blood from voluntarily and forcibly submerged Xenopus laevis. J Exp Biol 121: 285–300

    Google Scholar 

  • Boutilier RG, Shelton G (1986b) The effects of voluntary and forced diving on ventilation, blood gases and pH in Xenopus laevis. J Exp Biol 122: 209–222

    Google Scholar 

  • Boutilier RG, Shelton G (1986 c) Gas exchange, storage and transport in voluntarily diving Xenopus laevis. J Exp Biol 126: 133–155

    Google Scholar 

  • Boutilier RG, Toews DP (1977) The effect of progressive hypoxia on respiration in the toad, Bufo marinus. J Exp Biol 68: 99–107

    PubMed  CAS  Google Scholar 

  • Boutilier RG, Toews DP (1981a) Respiratory, circulatory and acid-base, adjustments to hypercapnia in a strictly aquatic and predominantly skin breathing urodele, Cryptobranchus alleganiensis. Respir Physiol 46: 177–192

    Article  PubMed  CAS  Google Scholar 

  • Boutilier RG, Toews DP (1981b) Respiratory properties of blood in a strictly aquatic and predominantly skin-breathing urodele Cryptobranchus alleganiensis. Respir Physiol 46: 161–176

    Article  PubMed  CAS  Google Scholar 

  • Boutilier RG, Randall DJ, Shelton G, Toews DP (1979 a) Acid-base relationships in the blood of the toad Bufo marinus. I. The effects of environmental CO2 J Exp Biol 82: 331–344

    Google Scholar 

  • Boutilier RG, Randall DJ, Shelton G, Toews DP (1979b) Acid-base relationships in the blood of the toad Bufo marinus. II. The effects of dehydration. J Exp Biol 82: 345–355

    Google Scholar 

  • Boutilier RG, McDonald DG, Toews DP (1980) The effects of enforced activity on ventilation, circulation and blood acid-base balance in the aquatic gill-less urodele, Cryptobranchus alleganiensis: a comparison with the semiterrestrial anuran, Bufo marinus. J Exp Biol 84: 289–302

    PubMed  CAS  Google Scholar 

  • Boutilier RG, Glass ML, Heisler N (1986) The relative distribution of pulmocutaneous blood flow in Rana catesbeiana: effects of pulmonary or cutaneous hypoxia. J Exp Biol 126: 33–39

    PubMed  CAS  Google Scholar 

  • Boutilier RG, Glass ML, Heisler N (1987) Blood gases, and extracellular/intracellular acid-base status as a function of temperature in the anuran amphibians Xenopus laevis and Bufo marinus. J Exp Biol 130: 13–25

    Google Scholar 

  • Brett SS (1980) Breathing and gas exchange in an aquatic amphibian, Xenopus laevis. PhD Dissertation, University of East Anglia, UK

    Google Scholar 

  • Brett SS, Shelton G (1979) Ventilatory mechansisms of the amphibian, Xenopus laevis: the role of the buccal force pump. J Exp Biol 80: 251–269

    Google Scholar 

  • Bugge J (1960) The heart of the African lungfish, Protopterus. Vidensk Medd Dan Naturhist Foren 123: 193–210

    Google Scholar 

  • Burggren WW (1979) Bimodal gas exchange during variation in environmental oxygen and carbon dioxide in the air breathing fish Trichogaster trichopterus. J Exp Biol 82: 197–213

    Google Scholar 

  • Burggren WW (1988) Cardiovascular responses to diving and their relation to lung and blood oxygen stores in vertebrates. Can J Zool 66: 20–28

    Article  Google Scholar 

  • Burggren WW (1989) Lung structure and function: Amphibians. In: Wood SC (ed) Comparative pulmonary physiology: current concepts, vol 39, Lung Biology in Health and Disease. Marcel Dekker, New York, pp 153–192

    Google Scholar 

  • Burggren WW, Haswell MS (1979) Aerial CO2 excretion in the obligate air breathing fish Trichogaster trichopterus. J Exp Biol 82: 215–225

    CAS  Google Scholar 

  • Burggren WW, Johansen K (1986) Circulation and respiration in lungfishes ( Dipnoi ). J Morphol (Suppl) 1: 217–236

    Google Scholar 

  • Burggren WW, Moalli R (1984) ‘Active’ regulation of cutaneous gas exchange by capillary recruitment in amphibians: experimental evidence and a revised model for skin respiration. Respir Physiol 55:379–392

    Google Scholar 

  • Burggren WW, West NH (1982) Changing importance of gills, lungs and skin during metamorphosis in the bullfrog Rana catesbeiana. Respir Physiol 47: 151–164

    Article  PubMed  CAS  Google Scholar 

  • Burggren WW, Shelton G (1979) Gas exchange and transport during intermittent breathing in chelonian reptiles. J Exp Biol 82: 75–92

    Google Scholar 

  • Burggren WW, Feder ME, Pinder AW (1983) Temperature and the balance between aerial and aquatic respiration in larvae of Rana berlandieri and Rana catesbeiana. Physiol Zool 56: 263–273

    Google Scholar 

  • Carter GS, Beadle LC (1931) The fauna of the swamps of the Paraguayan Chaco in relation to its environment. II. Respiratory adaptations in the fishes. J Linn Soc Lond 37: 327–366

    Google Scholar 

  • Crandall ED, Bidani A (1981) Effect of red blood cell HCO3-/Cl- exchange kinetics on lung CO2 transfer: theory. J Appl Physiol 50: 265–271

    PubMed  CAS  Google Scholar 

  • Crawford EC Jr, Schultetus RR (1970) Cutaneous gas exchange in the lizard, Sauromalus obesus. Copeia 1970: 179–180

    Article  Google Scholar 

  • Czopek J (1959) Skin and lung capillaries in European common newts. Copeia 1959: 91–96

    Article  Google Scholar 

  • Czopek J (1961) Vascularization of respiratory surfaces of some Plethodontidae. Zool Pol 11: 131–148

    Google Scholar 

  • Czopek J (1965) Quantitative studies on the morphology of respiratory surfaces in amphibians. Acta Anat 62: 296–323

    Article  PubMed  CAS  Google Scholar 

  • Davis JC, Cameron JN (1971) Water flow and gas exchange at the gills of rainbow trout, Salmo gairdneri. J Exp Biol 54: 1–18

    PubMed  CAS  Google Scholar 

  • Daxboeck C, Barnard DK, Randall DJ (1981) Functional morphology of the gills of the bowfin, Amia calva L., with special reference to their significance during air exposure. Respir Physiol 9: 349–364

    Article  Google Scholar 

  • DeGroodt M, Lagasse A, Sebruyns M (1960) Elektronenmikroskopische Morphologie der Lungenalveolen des Protopterus und Amblystoma. Proc 4th Internat Conf Electron Microscopy, Berlin 1958, vol 1. Springer, Berlin Göttingen Heidelberg, pp 418–421

    Google Scholar 

  • DeJongh HJ (1972) Activity of the body wall musculature of the African clawed toad, Xenopus laevis (Daudin) during diving and respiration. Zool Med 47: 135–144

    Google Scholar 

  • DeJongh HJ, Gans C (1969) On the mechanism of respiration in the bullfrog, Rana catesbeiana: a reassessment. J Morphol 127: 259–290

    Article  Google Scholar 

  • Dejours P (1973) Problems of control of breathing in fishes. In: Bolis L, Schmidt-Nielsen K, Madrell SHP (eds) Comparative physiology. Elsevier/North Holland, Amsterdam, pp 117–133

    Google Scholar 

  • Dejours P (1981) Principles of comparative respiratory physiology, 2nd edn. Elsevier/North Holland, Amsterdam

    Google Scholar 

  • DeLaney RG, Laurent P, Galante R, Pack AI, Fishman AP (1983) Pulmonary mechanoreceptors in the dipnoan lungfish Protopterus and Lepidosiren. Am J Physiol 244: R418–R428

    PubMed  CAS  Google Scholar 

  • de Saint-Aubain ML, Wingstrand K (1979) A sphincter in the pulmonary artery of the frog Rana temporaria and its influence on blood flow in skin and lungs. Acta Zool (Stockh) 60: 163–172

    Article  Google Scholar 

  • Deyst KA, Liem KF (1985) The muscular basis of aerial ventilation of the primitive lung of Amia calva. Respir Physiol 59: 213–223

    Article  PubMed  CAS  Google Scholar 

  • Emilio MG, Shelton G (1972) Factors affecting blood flow to the lungs in the amphibian, Xenopus laevis. J Exp Biol 56: 67–77

    Google Scholar 

  • Evans BK, Shelton G (1984) Ventilation in Xenopus laevis after lung or carotid labyrinth denervation. In: Giles R (ed) First Congress of Comparative Physiology and Biochemistry, volume issued by the Eur Soc Comp Physiol Biochem, Liege, Belgium, pp A 75

    Google Scholar 

  • Farber J, Rahn H (1970) Gas exchange between air and water and the ventilation pattern in the electric eel. Respir Physiol 9: 151–161

    Article  PubMed  CAS  Google Scholar 

  • Farrell AP, Randall DJ (1978) Air-breathing mechanics in two Amazonian teleosts, Arapaima gigas and Hoplerythrinus unitaeniatus. Can J Zool 56: 939–945

    Article  Google Scholar 

  • Feder ME, Burggren WW (1985) Cutaneous gas exchange in vertebrates: design, patterns, control and implications. Biol Rev 60: 1–45

    Article  PubMed  CAS  Google Scholar 

  • Feder ME, Pinder AW (1988) Ventilation and its effect on “infinite pool” exchangers. Am Zool 28: 973–983

    Google Scholar 

  • Fishman AP, DeLaney RG, Laurent P (1985) Circulatory adaptation to bimodal respiration in the dipnoan lungfish. J Appl Physiol 59: 285–294

    PubMed  CAS  Google Scholar 

  • Fishman AP, Galante RJ, Pack AI (1989) Diving physiology: lungfish. In: Wood SC (ed) Comparative pulmonary physiology: current concepts, vol 39. Lung biology in health and disease. Marcel Dekker, New York, pp 645–676

    Google Scholar 

  • Foxon GEH (1964) Blood and respiration. In: Moore JA (ed) Physiology of the Amphibia. Academic Press, New York, pp 151–209

    Google Scholar 

  • Garey WF, Rahn H (1970) Normal arterial gas tensions and pH and the breathing frequency of the electric eel. Respir Physiol 9: 141–150

    Article  PubMed  CAS  Google Scholar 

  • Gee JH, Graham JB (1978) Respiratory and hydrostatic functions of the intestine of the catfishes Hoplosternum thoracatum and Brochis splendens ( Callichthyidae ). J Exp Biol 74: 1–16

    Google Scholar 

  • Girgis S (1961) Aquatic respiration in the common Nile turtle, Trionyx triunguis (Forskal). Comp Biochem Physiol 3: 206–217

    Article  PubMed  CAS  Google Scholar 

  • Glass ML, Johansen K (1976) Control of breathing in Acrochordus javanicus, an aquatic snake. Physiol Zool 49: 328–340

    Google Scholar 

  • Glass ML, Hicks JW, Riedesel ML (1979) Respiratory responses to long-term temperature exposure in the box turtle, Terrapene ornata. J Comp Physiol 131: 353–359

    Google Scholar 

  • Glass ML, Boutilier RG, Heisler N (1983) Ventilatory control of arterial PO2 in the turtle, Chrysemys picta bellii: effects of temperature and hypoxia. J Comp Physiol 151: 145–153

    Google Scholar 

  • Glass ML, Ishimatsu A, Johansen K (1986) Responses of aerial ventilation to hypoxia and hypercapnia in Channa argus, an airbreathing fish. J Comp Physiol B 156: 425–430

    Article  Google Scholar 

  • Graham JB (1973) Terrestrial life of the amphibious fish Mnierpes macrocephalus. Mar Biol (Berlin) 23: 83–91

    Article  Google Scholar 

  • Graham JB (1974) Aquatic respiration in the sea snake Pelamis platurus. Respir Physiol 21: 1–7

    Article  PubMed  CAS  Google Scholar 

  • Graham JB (1976) Respiratory adaptations of marine air-breathing fishes. In: Hughes GM (ed) Respiration of amphibious vertebrates. Academic Press, New York, pp 165–187

    Google Scholar 

  • Grahamm JB, Baird TA (1982) The transition to air breathing in fishes. I. Environmental effects on the facultative air breathing of Ancistris chagresi and Hypostomusplecostomus ( Loricariidae ). J Exp Biol 96: 53–67

    Google Scholar 

  • Graham JB, Kramer DL, Pineda E (1977) Respiration of the air-breathing fish Piabucina festae. J Comp Physiol 122: 295–310

    Google Scholar 

  • Guimond RW, Hutchison VH (1972) Pulmonary, branchial and cutaneous gas exchange in the mudpuppy, Necturus maculosus maculosus ( Rafinesque ). Comp Biochem Physiol 42A: 367–392

    Google Scholar 

  • Guimond RW, Hutchison VH (1973) Aquatic respiration: an unusual strategy in the hellbender Cryptobranchus alleganiensis alleganiensis ( Daudin ). Science 182: 1263–1265

    Google Scholar 

  • Guimond RW, Hutchison VH (1976) Gas exchange of the giant salamanders of North America. In: Hughes GM (ed) Respiration of amphibious vertebrates. Academic Press, New York, pp 313–338

    Google Scholar 

  • Halliday TR, Sweatman HPA (1976) To breathe or not to breathe: the newt’s problem. Anim Behav 24: 551–561

    Article  Google Scholar 

  • Heath AG (1975) Respiratory responses to hypoxia by Ambystoma tigrinum larvae, paedomorphs, and metamorphosed adults. Comp Biochem Physiol 55A: 45–49

    Article  Google Scholar 

  • Heatwole H, Seymour RS (1976) Respiration of marine snakes. In: Hughes GM (ed) Respiration of amphibious vertebrates. Academic Press, New York, pp 375–389

    Google Scholar 

  • Heatwole H, Seymour RS (1978) Cutaneous oxygen uptake in three groups of aquatic snakes. Aust J Zool 26: 481–486

    Article  Google Scholar 

  • Heisler N (1982) Intracellular and extracellular acid-base regulation in the tropical fresh-water teleosts Symbranchus marmoratus in response to the transition from water breathing to air breathing. J Exp Biol 99: 9–28

    PubMed  CAS  Google Scholar 

  • Heming TA, Watson TA (1986) Activity and inhibition of carbonic anhydrase in Amia calva, a bimodal breathing holostean fish. J Fish Biol 28: 385–392

    Article  CAS  Google Scholar 

  • Heming TA, Geers C, Gros G, Bidani A, Crandall ED (1986) Effects of dextran bound inhibitors on carbonic anhydrase activity in isolated rat lungs. J Appl Physiol 61: 1849–1856

    PubMed  CAS  Google Scholar 

  • Hughes GM, Munshi JSD (1973) Nature of the air breathing organs of the Indian fishes Channa, Amphipnous, Clarius and Saccobranchus as shown by electron microscopy. J Zool Lond 170: 245–270

    Article  Google Scholar 

  • Hughes GM, Singh BN (1971) Gas exchange with air and water in an air-breathing catfish Saccobranchus fossilis. J Exp Biol 53: 281–298

    Google Scholar 

  • Hutchison VH, Miller K (1979) Aerobic and anaerobic contributions to sustained activity in Xenopus laevis. Respir Physiol 38: 93–103

    Article  PubMed  CAS  Google Scholar 

  • Hutchison VH, Whitford WG, Kohl M (1968) Relation of body size and surface area to gas exchange in anurans. Physiol Zool 41: 65–85

    Google Scholar 

  • Hutchison VH, Haines HB, Engbretson G (1976) Aquatic life at high altitude: respiratory adaptations in the Lake Titicaca frog, Telmatobius culeus. Respir Physiol 27: 115–129

    Article  PubMed  CAS  Google Scholar 

  • Hyde DA, Moon TW, Perry SF (1987) Physiological consequences of prolonged aerial exposure in the American eel, Anguilla rostrata: blood respiratory and acid-base status. J Comp Physiol 157: 635–642

    Google Scholar 

  • Inger RF (1957) Ecological aspects of the origin of the tetrapods. Evolution 11: 373–376

    Article  Google Scholar 

  • Ishii K, Ishii K (1976) The chemoreceptors of amphibians. In: Paintal AS (ed) Morphology and mechanisms of chemoreceptors. Vallabhbhai Patel Chest Inst, Delhi, India, pp 265–274

    Google Scholar 

  • Ishii K, Kusakabe T (1982) The glomus cell of the carotid labyrinth of Xenopus laevis. Cell Tissue Res 224: 459–463

    Article  PubMed  CAS  Google Scholar 

  • Ishii K, Oosaki T (1969) Fine structure of the chemoreceptor cell in the amphibian carotid laby-rinth. J Anat (Lond) 104: 263–280

    CAS  Google Scholar 

  • Ishii K, Honda K, Ishii K (1966) The function of the carotid labyrinth in the toad. Tohoku J Exp Med 88: 103–116

    Article  PubMed  CAS  Google Scholar 

  • Ishii K, Ishii K, Kusakabe T (1985) Chemo- and baroreceptor innervation of the aortic trunk of the toad Bufo vulgaris. Respir Physiol 60: 365–375

    Article  PubMed  CAS  Google Scholar 

  • Ishimatzu A, Itazawa Y (1981) Ventilation of the air-breathing organ in the snakehead Channa argus. Jpn J Ichthyol 28: 276–282

    Google Scholar 

  • Ishimatzu A, Itazawa Y (1983) Difference in blood O2 levels in the outflow vessels of the heart of an air-breathing fish, Channa argus: do separate blood streams exist in a teleost heart. J Comp Physiol 149: 435–440

    Google Scholar 

  • Ishimatzu A, Itazawa Y, Takeda T (1979) On the circulatory systems of the snakeheads, Channa maculata and C. argus with reference to bimodal breathing. Jpn J Ichthyol 26: 167–180

    Google Scholar 

  • Ishimatzu A, Johansen K, Nilsson S (1986) Autonomic nervous control of the circulatory system in the air-breathing fish Channa argus. Comp Biochem Physiol 84C: 55–60

    Article  Google Scholar 

  • Jackson DC (1973) Ventilatory response to hypoxia in turtles at various temperatures. Respir Physiol 18: 178–187

    Article  PubMed  CAS  Google Scholar 

  • Jackson DC (1976) Non-pulmonary Co2 loss during diving in the turtle Pseudemys scripta elegans. Comp Biochem Physiol 55A: 237–241

    Article  CAS  Google Scholar 

  • Jackson DC (1978) Respiratory control in air-breathing ectotherms. In: Davies DG, Barnes CD (eds) Regulation of ventilation and gas exchange. Academic Press, New York, pp 93–130

    Google Scholar 

  • Jackson DC (1986) Acid-base regulation of reptiles. In: Heisler N (ed) Acid-base regulation in animals. Elsevier Science, Amsterdam, pp 235–263

    Google Scholar 

  • Jackson DC, Braun BA (1979) Respiratory control in bullfrogs: cutaneous versus pulmonary response to selective CO2 exposure. J Comp Physiol 129: 339–342

    Google Scholar 

  • Jackson DC, Allen J, Strupp PK (1976) The contribution of non-pulmonary surfaces to CO22 loss in six species of turtles at 20°C. Comp Biochem Physiol 55A: 243–246

    Article  CAS  Google Scholar 

  • Jesse MJ, Shub C, Fishman AP (1967) Lung and gill ventilation of the African lung fish. Respir Physiol 3: 267–287

    Article  PubMed  CAS  Google Scholar 

  • Johansen K (1966) Airbreathing in the teleost Synbranchus marmoratus. Comp Biochem Physiol 18: 383–395

    Article  PubMed  CAS  Google Scholar 

  • Johansen K (1968) Air breathing fishes. Sci Am 219: 102–111

    Article  PubMed  CAS  Google Scholar 

  • Johansen K (1970) Air breathing in fishes. In: Hoar WS, Randall DJ (eds) Fish physiology, vol IV. Academic Press, New York, pp 361–411

    Google Scholar 

  • Johansen K (1982) Blood circulation and the rise of air-breathing: passes and bipasses. In: Taylor CR, Johansen K, Bolis L (eds) A companion to animal physiology. Cambridge University Press, Cambridge, pp 91–105

    Google Scholar 

  • Johansen K (1985) A phylogenetic overview of cardiovascular shunts. In: Johansen K, Burggren WW (eds) Cardiovascular shunts, Alfred Benzon Symposium 21. Munksgaard, Copenhagen pp 17–32

    Google Scholar 

  • Johansen K, Burggren WW (1980) Cardiovascular function in the lower vertebrates. In: Bourne G (ed) Hearts and heart-like organs, vol 1. Academic Press, New York, pp 61–117

    Google Scholar 

  • Johansen K, Lenfant C (1967) Respiratory function in the South American lungfish. J Exp Biol 46: 205–218

    PubMed  CAS  Google Scholar 

  • Johansen K, Lenfant C (1968) Respiration in the African lungfish, Protopterus aethiopicus. II. Control of breathing. J Exp Biol 49: 453–468

    Google Scholar 

  • Johansen K, Lenfant C, Grigg GF (1967) Respiratory control in the lungfish Neoceratodus forsten ( Krefft ). Comp Biochem Physiol 20: 835–854

    Google Scholar 

  • Johansen K, Lenfant C, Hanson D (1968 a) Cardiovascular dynamics in the lungfishes. Z Vergl Physiol 59: 157–186

    Google Scholar 

  • Johansen K, Lenfant C, Schmidt-Nielsen K, Peterson JA (1968 b) Gas exchange and control of breathing in the electric eel Electrophorus electricus. Z Vgl Physiol 61: 137–163

    Google Scholar 

  • Johansen K, Hanson D, Lenfant C (1970 a) Respiration in a primitive air breather Amia calva. Respir Physiol 9: 162–174

    Google Scholar 

  • Johansen K, Lenfant C, Hanson D (1970b) Phylogenetic development of pulmonary circulation. Fed Proc Fed Am Soc Exp Biol 29: 1135–1140

    CAS  Google Scholar 

  • Jones DR, Chu C (1988) Effect of denervation of carotid labyrinths on breathing in unrestrained Xenopus laevis. Respir Physiol 73: 243–256

    Article  PubMed  CAS  Google Scholar 

  • Jones DR, Milsom WK (1982) Peripheral receptors affecting breathing and cardiovascular function in non-mammalian vertebrates. J Exp Biol 100: 59–91

    Google Scholar 

  • Jones RM (1982) How toads breathe: control of air flow to and from the lungs by the nares in Bufo marinus. Respir Physiol 49: 251–265

    Article  PubMed  CAS  Google Scholar 

  • Jordan J (1976) The influence of body weight on gas exchange in the air-breathing fish, Clarius batrachus. Comp Biochem Physiol 53A: 305–310

    Article  CAS  Google Scholar 

  • Kern DM (1960) The hydration of carbon dioxide. J Chem Educ 37: 14–23

    Article  CAS  Google Scholar 

  • Kramer DL (1978) Ventilation of the respiratory gas bladder in Hoplerythrinus unitaeniatus (Pisces, Characoidei, Erythrinidae). Can J Zool 56: 931–938

    Article  Google Scholar 

  • Kramer DL (1983) The evolutionary ecology of respiratory mode in fishes: an analysis based on the costs of breathing. Environ Biol Fish 9: 145–158

    Article  Google Scholar 

  • Kramer DL (1988) The behavioral ecology of air breathing by aquatic animals. Can J Zool 66: 89–94

    Article  Google Scholar 

  • Kramer DL, McClure M (1981) The transit cost of aerial respiration in the catfish, Corydoras aeneus ( Callichthyidae ). Physiol Zool 54: 189–194

    Google Scholar 

  • Kruhøffer M, Glass ML, Abe AS, Johansen K (1987) Control of breathing in an amphibian Bufo paracnemius: effects of temperature and hypoxia. Respir Physiol 69: 267–275

    Article  PubMed  Google Scholar 

  • Kuhlmann WD, Fedde MR (1979) Intrapulmonary receptors in the bullfrog: sensitivity to CO2. J Comp Physiol 132: 69–75

    Article  CAS  Google Scholar 

  • Lahiri S, Szidon JP, Fishman AP (1970) Potential respiratory and circulatory adjustments to hypoxia in the African lungfish. Fed Proc 29: 1141–1148

    PubMed  CAS  Google Scholar 

  • Laurent P, DeLaney RG, Fishman AP (1978) The vasculature of the gills in the aquatic and estivating lungfish, Protopterus aethiopicus. J Morphol 156: 173–208

    Article  Google Scholar 

  • Legier JM, Cann J (1980) A new genus and species of chelid turtle from Queensland, Australia. Contrib Sci Nat Hist Mus Los Angeles County 324: 1–18

    Google Scholar 

  • Lenfant C, Johansen K (1967) Respiratory adaptations in selected amphibians. Respir Physiol 2: 247–260

    Article  PubMed  CAS  Google Scholar 

  • Lenfant C, Johansen K (1968) Respiration in an African lungfish, Protopterus aethiopicus: respiratory properties of blood and normal patterns of breathing and gas exchange. J Exp Biol 49: 437–457

    PubMed  CAS  Google Scholar 

  • Lenfant C, Johansen K, Grigg GC (1966) Respiratory properties of blood and pattern of gas exchange in the lungfish Neoceratodus forsteri ( Krefft ). Respir Physiol 2: 1–21

    Google Scholar 

  • Lenfant C, Johansen K, Hanson D (1970) Bimodal gas exchange and ventilation-perfusison relationship in lower vertebrates. Fed Proc 29: 1124–1129

    PubMed  CAS  Google Scholar 

  • Liem KF (1967) Functional morphology of the integumentary respiratory and digestive systems of the synbranchoid fish Monopterus albus. Copeia 1967: 375–388

    Article  Google Scholar 

  • Liem KF (1980) Air ventilation in advanced teleosts: biomechanical and evolutionary aspects. In: Ali MA (ed) Environmental physiology of fishes. Plenum, New York, pp 57–91

    Google Scholar 

  • Liem KF (1984) The muscular basis of aquatic and aerial ventilation in the air-breathing teleost fish Channa. J Exp Biol 113: 1–18

    Google Scholar 

  • Liem KF (1987) Functional design of the air ventilation apparatus and overland excursions by teleosts. Fieldiana Zool, New Ser 37: 1–29

    Google Scholar 

  • Lillo RS (1980) Localisation of chemoreceptors which may cause diving bradycardia in bullfrogs. Can J Zool 52: 931–936

    Article  Google Scholar 

  • Lomholt JP, Johansen K (1974) Control of breathing in Amphipnous cuchia, an amphibious fish. Respir Physiol 21: 325–340

    Article  PubMed  CAS  Google Scholar 

  • Lomholt JP, Johansen K (1976) Gas exchange in the amphibious fish, Amphipnous cuchia. J Comp Physiol 107: 141–157

    Google Scholar 

  • Macintyre DH (1975) Respiratory mechanisms and acid-base regulation in Bufo marinus marinus (L.). M Sc dissertation, Acadia University, Canada

    Google Scholar 

  • Macintyre DH, Toews DP (1976) The mechanics of lung ventilation and the effects of hypercapnia on respiration in the toad, Bufo marinus. Can J Zool 54: 1364–1374

    Article  Google Scholar 

  • Mackenzie JA, Jackson DC (1978) The effect of temperature on cutaneous CO2 loss and conductance in the bullfrog. Respir Physiol 32: 313–323

    Article  PubMed  CAS  Google Scholar 

  • Malvin GM (1985 a) Vascular resistance and vasoactivity of gills and pulmonary artery of the salamander, Ambystoma tigrinum. J Comp Physiol 155:241–249

    Google Scholar 

  • Malvin GM (1985 b) Adrenoceptor types in the respiratory vasculature of the salamander gill. J Comp Physiol 155:591–596

    Google Scholar 

  • Malvin GM ( 1985 c) Cardiovascular shunting during amphibian metamorphosis. In: Johansen K, Burggren WW (eds) Cardiovascular shunts. Alfred Benzon Symposium 21. Munskgaard, Copenhagen, pp 163–178

    Google Scholar 

  • Malvin GM (1988) Microvascular regulation of cutaneous gas exchange in amphibians. Am Zool 28: 999–1007

    Google Scholar 

  • Malvin GM (1989) Gill structure and function: Amphibian larvae. In: Wood SC (ed) Comparative pulmonary physiology: current concepts, vol 39. Lung biology in health and disease. Marcel Dekker, New York, pp 121–151

    Google Scholar 

  • Malvin GM, Boutilier RG (1985) Ventilation-perfusion relationships in Amphibia. In: Giles R (ed) Circulation, respiration and metabolism. Springer, Berlin Heidelberg New York Tokyo, pp 114–124

    Google Scholar 

  • Malvin GM, Hlastala MP (1986) Regulation of cutaneous gas exchange by environmental O2 and CO2 in the frog. Respir Physiol 65: 99–111

    Article  PubMed  CAS  Google Scholar 

  • Maren TH (1967) Carbonic anhydrase: chemistry, physiology, and inhibition. Physiol Rev 47: 595 - 781

    PubMed  CAS  Google Scholar 

  • Martin KM, Hutchison VH (1979) Ventilatory activity in Amphiuma tridactylum and Siren lacertina ( Amphibia, Caudata). J Herpetol 13: 427–434

    Google Scholar 

  • McDonald DG, Boutilier RG, Toews DP (1980) The effects of enforced activity on ventilation, circulation and blood acid-base balance in the semiterrestrial anuran, Bufo marinus. J Exp Biol 84: 273–287

    PubMed  CAS  Google Scholar 

  • McKean T (1969) A linear approximation of the transfer function of pulmonary mechanoreceptors in the frog. J Appl Physiol 27: 775–781

    PubMed  CAS  Google Scholar 

  • McMahon BR (1969) A functional analysis of the aquatic and aerial respiratory movements of an African lungfish, Protopterus aethiopicus, with reference to the evolution of the lung-ventilation mechanism in the vertebrates. J Exp Biol 51: 407–430

    PubMed  CAS  Google Scholar 

  • McMahon BR, Burggren WW (1987) Respiratory physiology of intestinal air breathing in the teleost fish Misgurnus anguillicaudatus. J Exp Biol 133: 371–393

    Google Scholar 

  • Miller K, Hutchison VH (1979) Activity metabolism in the mudpuppy, Necturus maculosus. Physiol Zool 52: 22–37

    CAS  Google Scholar 

  • Milsom WK, Jones DR (1977) Carbon dioxide sensitivity of pulmonary receptors in the frog. Experientia 33: 1167–1168

    Article  PubMed  CAS  Google Scholar 

  • Milsom WK, Jones DR (1985) Characteristics of mechanoreceptors in the air-breathing organ of the holostean fish, Amia calva. J Exp Biol 117: 389–399

    Google Scholar 

  • Munshi JSD (1968) The accessory respiratory organs of Anabas testudineus (B.L.) Anabantidae Pisces. Proc Linn Soc Lond (Zool) 179: 107–126

    Article  Google Scholar 

  • Munshi JSD, Singh BN (1968) On the respiratory organs of Amphipnous cuchia (Ham. Buch). J Morphol 124: 423–444

    Google Scholar 

  • Nikinmaa M, Railo E (1987) Anion movements across lamprey (Lampetra fluviatilis) red cell membrane. Biochim Biophys Acta 899: 134–136

    Article  PubMed  CAS  Google Scholar 

  • Nikinmaa M, Tufts BL (1989) Regulation of acid and ion transfer across the membrane of nu-cleated erythrocytes. Can J Zool 67 (in press)

    Google Scholar 

  • Pack AI, Galante R, Fishman AP (1984) Breuer-Hering reflexes in the African lungfish (Protopterus annectens). Fed Proc Fed Am Soc Exp Biol 43: 433 (Abstr)

    Google Scholar 

  • Packard GC (1974) The evolution of air-breathing in Paleozoic gnathostome fishes. Evolution 28: 320–325

    Article  Google Scholar 

  • Peters HM (1978) On the mechanism of air ventilation in anabantoids (Pisces: Teleostei). Zoomorphologie 89: 93–123

    Article  Google Scholar 

  • Pettit MJ, Beitinger T (1985) Oxygen acquisition of the reedfish, Erpetoichthys calabaracus. J Exp Biol 114: 289–306

    Google Scholar 

  • Piiper J (1982) Respiratory gas exchange at lungs, gills and tissues: mechanisms and adjustments. J Exp Biol 100: 5–22

    PubMed  CAS  Google Scholar 

  • Piiper J (1988) Models for cutaneous gas exchange and transport. Am Zool 28: 963–972

    Google Scholar 

  • Piiper J, Scheid P (1977) Comparative physiology of respiration: Functional analysis of gas exchange organs in vertebrates. In: Widdicombe JG (ed) International review of physiology, vol 14. Respiratory physiology, II. University Park Press, Baltimore, pp 219–253

    Google Scholar 

  • Piiper J, Dejours P, Haab P, Rahn H (1971) Concepts and basic quantities in gas exchange physiology. Respir Physiol 13: 292–304

    Article  PubMed  CAS  Google Scholar 

  • Piiper J, Gatz RN, Crawford EC Jr (1976) Gas transport characteristics in an exclusively skin- breathing salamander, Desmognathus fuscus (Plethodontidae). In: Hughes GM (ed) Respiration in amphibious vertebrates. Academic Press, New York, pp 339–356

    Google Scholar 

  • Pinder AW (1987) Cutaneous diffusing capacity increases during hypoxia in cold, submerged bullfrogs (Rana catesbeiana). Respir Physiol 70: 85–95

    Article  PubMed  CAS  Google Scholar 

  • Pinder AW, Burggren WW (1986) Ventilation and partitioning of oxygen uptake in the frog Rana pipiens: effects of hypoxia and activity. J Exp Biol 126: 453–468

    PubMed  CAS  Google Scholar 

  • Poullet M (1977) A study of nerve endings in the carotid labyrinth of the toad (Bufo bufo) after degeneration. Biol Cell 28: 75–80

    Google Scholar 

  • Rahn H (1966) Aquatic gas exchange: theory. Respir Physiol 1: 1–12

    Article  PubMed  CAS  Google Scholar 

  • Rahn H (1967) Gas transport from the external environment of the cell. In: DeReuck AUS, Porter R (eds) Development of the lung. Ciba Found Symp, Churchill, London, pp 3–23

    Chapter  Google Scholar 

  • Rahn H, Howell BJ (1976) Bimodal gas exchange. In: Hughes GM (ed) Respiration of amphibious vertebrates. Academic Press, New York, pp 271–285

    Google Scholar 

  • Rahn H, Rahn KB, Howell BJ, Gans C, Tenney SM (1971) Air-breathing of the garfish (Lepisosteus osseus). Respir Physiol 11: 285–307

    Article  PubMed  CAS  Google Scholar 

  • Randall DJ (1982 a) The control of respiration and circulation in fish during exercise and hypoxia. J Exp Biol 100:275–288

    Google Scholar 

  • Randall DJ (1982b) Blood flow through gills. In: Houlihan DF, Rankin JC, Shuttleworth TJ (eds) Gills. Soc Exp Biol Sem Ser 16, Cambridge University Press, Cambridge, pp 173–191

    Google Scholar 

  • Randall DJ, Farrell AP, Haswell MS (1978 a) Carbon dioxide excretion in the jeju Hoplerythrinus unitaeniatus, a facultative air-breathing teleost. Can J Zool 56: 970–973

    Google Scholar 

  • Randall DJ, Farrell AP, Haswell MS (1978 b) Carbon dioxide excretion in the pirarucu (Arapaima gigas), an obligate air breathing fish. Can J Zool 56: 977–982

    Google Scholar 

  • Randall DJ, Burggren WW, Farrell AP, Haswell MS (1981) The evolution of air-breathing in vertebrates. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Rao HS, Hora LS (1938) On the ecology, bionomics and systematics of the blennid fishes of the genus Andamia Blyth. Rec Indian Mus 40: 377–401

    Google Scholar 

  • Rauch JC (1978) Integumentary blood vascular system in garter snakes (Thamnophis sirtalis parietalis and Thamnophis radix). Can J Zool 56: 469–476

    Article  PubMed  CAS  Google Scholar 

  • Rogers DC (1966) A histological and histochemical study of the carotid labyrinth in the anuran amphibians, Bufo marinus, Hyla aurea and Neobatrachus pictus. Acta Anat 63: 249–280

    Article  PubMed  CAS  Google Scholar 

  • Root RW (1949) Aquatic respiration in the musk turtle. Physiol Zool 22: 172–178

    PubMed  CAS  Google Scholar 

  • Rosen S, Friedley NJ (1973) Carbonic anhydrase activity in Rana pipiens skin: biochemical and histochemical analysis. Histochemie 36: 1–4

    Article  PubMed  CAS  Google Scholar 

  • Rosenberg HI, Voris HK (1980) Cutaneous capillaries of sea snakes and their possible role in gas exchange. Am Zool 20: 758

    Google Scholar 

  • Sacca R, Burggren WW (1982) Oxygen uptake in air and water in the air-breathing reedfish Calamoichthys calabaricus: role of skin, gills and lungs. J Exp Biol 97: 179–186

    PubMed  CAS  Google Scholar 

  • Scheid P (1982) A model for comparing gas-exchange systems in vertebrates. In: Taylor CR, Johansen K, Bolis L (eds) A companion to animal physiology. Cambridge University Press, Cambridge, pp 3–16

    Google Scholar 

  • Schottie E (1932) Morphologie und Physiologie der Atmung bei wasser-, schlämm- und land-lebenden Gobiiformes. Z Wiss Zool 140: 1–114

    Google Scholar 

  • Sewertzoff AN (1924) Die Entwicklung der Kiemen und Kiemenbogengefäße der Fische. Z Wiss Zool 121: 494–556

    Google Scholar 

  • Seymour RS (1982) Physiological adaptations to aquatic life. In: Gans C, Pough FH (eds) Biology of the Reptilia: physiological ecology, vol 13. Academic Press, New York, pp 1–51

    Google Scholar 

  • Seymour RS (1989) Diving physiology: reptiles. In: Wood SC (ed) Comparative pulmonary physiology: current concepts, vol 39. Lung biology in health and disease. Marcel Dekker, New York, pp 677–695

    Google Scholar 

  • Shannon P, Kramer DL (1988) Water depth alters respiratory behaviour of Xenopus laevis. J Exp Biol 137: 597–602

    PubMed  CAS  Google Scholar 

  • Shelton G (1970) The effect of lung ventilation on blood flow to the lungs and body of the amphibian, Xenopus laevis. Respir Physiol 9: 183–196

    Article  PubMed  CAS  Google Scholar 

  • Shelton G (1985) Functional and evolutionary significance of cardiovascular shunts in the Amphibia. In: Johansen K, Burggren WW (eds) Cardiovascular shunts. Alfred Benzon Symposium 21. Munksgaard, Copenhagen, pp 100–120

    Google Scholar 

  • Shelton G, Boutilier RG (1982) Apnoea in amphibians and reptiles. In: Butler PJ (ed) Control and co-ordination of respiration and circulation. J Exp Biol 100: 245–273

    Google Scholar 

  • Shelton G, Jones DR, Milsom WK (1986) Control of breathing in ectothermic vertebrates. In: Cherniack NS, Widdicombe JG (eds) Handbook of physiology, Sect 3. The respiratory system, vol 2. Control of breathing. American Physiological Society, Bethesda, MD, pp 857–909

    Google Scholar 

  • Shield JW, Bentley PJ (1973) Respiration of some urodele and anuran amphibia. I. In water, role of the skin and gills. Comp Biochem Physiol 46A: 17–28

    Google Scholar 

  • Singh BN (1976) Balance between aquatic and aerial respiration. In: Hughes GM (ed) Respiration of amphibious vertebrates. Academic Press, New York, pp 125–164

    Google Scholar 

  • Singh BN, Hughes GM (1971) Respiration of an air-breathing catfish Clarias batrachus ( Linn ). J Exp Biol 55: 421–434

    Google Scholar 

  • Singh BN, Hughes GM (1973) Cardiac and respiratory responses in the climbing perch Anabas testudineus. J Comp Physiol 84: 205–226

    Article  Google Scholar 

  • Smatresk NJ (1986) Ventilatory and cardiovascular responses to hypoxia and NaCN in Lepisosteus osseus, an air-breathing fish. Physiol Zool 59: 385–397

    Google Scholar 

  • Smatresk NJ (1988) Control of the respiratory mode in air-breathing fishes. Can J Zool 66: 144–151

    Article  Google Scholar 

  • Smatresk NJ, Azizi SQ (1987) Characteristics of lung mechanoreceptors in spotted gar, Lepisosteus oculatus. Am J Physiol 252:R 1066–R1072

    Google Scholar 

  • Smatresk NJ, Cameron JN ( 1982 a) Respiration and acid-base physiology of the spotted gar, a bimodal breather. I. Normal values and the response to severe hypoxia. J Exp Biol 96: 263–280

    Google Scholar 

  • Smatresk NJ, Cameron JN (1982b) Respiration and acid-base physiology of the spotted gar, a bimodal breather. II. Responses to temperature change and hypercapnia. J Exp Biol 96: 281–293

    Google Scholar 

  • Smatresk NJ, Burleson ML, Azizi SQ (1986) Chemoreflexive responses to hypoxia and NaCN in longnose gar: evidence for two chemoreceptor loci. Am J Physiol 251: R116–R125

    PubMed  CAS  Google Scholar 

  • Smith DG (1976) The innervation of the cutaneous artery in the toad, Bufo marinus. Gen Pharmacol 7: 404–409

    Google Scholar 

  • Smith DG, Rapson L (1977) Differences in pulmonary microvascular anatomy between Bufo marinus and Xenopus laevis. Cell Tissue Res 178: 1–15

    Article  PubMed  CAS  Google Scholar 

  • Smyth DH (1939) The central and reflex control of respiration in the frog. J Physiol 95: 305–327

    PubMed  CAS  Google Scholar 

  • Standaert T, Johansen K (1974) Cutaneous gas exchange in snakes. J Comp Physiol 89: 313–320

    Article  Google Scholar 

  • Stevens ED, Holeton GF (1978) The partitioning of oxygen uptake from air and from water by erythrinids. Can J Zool 56: 965–969

    Article  Google Scholar 

  • Taglietti V, Casella C (1966) Stretch receptors stimulation in frogs’ lungs. Pflügers Arch 292: 297–308

    Article  CAS  Google Scholar 

  • Taglietti V, Casella C (1968) Deflation receptors in frogs’ lungs. Pflügers Arch 304: 81–89

    Article  PubMed  CAS  Google Scholar 

  • Tamura SO, Morii H, Yuzuriha M (1976) Respiration of the amphibious fishes, Periophthalmus cantonensis and Boleophthalmus chinensis in water and on land. J Exp Biol 65: 97–107

    PubMed  CAS  Google Scholar 

  • Todd ES, Ebeling AW (1966) Aerial respiration in the long jaw mud-sucker Gillichthys mirabilis (teleostei: Gobiidae ). Biol Bull 130: 256–288

    Google Scholar 

  • Toews DP (1971) Factors affecting the onset and termination of ventilation in the salamander, Amphiuma tridactylum. Can J Zool 49: 1231–1237

    Article  PubMed  CAS  Google Scholar 

  • Toews DP, Boutilier RG (1986) Acid-base regulation in the Amphibia. In: Heisler N (ed) Acid- base regulation in animals. Elsevier, Amsterdam, pp 265–308

    Google Scholar 

  • Toews DP, Kirby S (1985) The ventilatory and acid-base physiology of the toad, Bufo marinus, during exposure to environmental hyperoxia. Respir Physiol 59: 225–230

    Article  PubMed  CAS  Google Scholar 

  • Toews DP, Macintyre D (1978) Respiration and circulation in an apodan amphibian. Can J Zool 56: 998–1004

    Article  CAS  Google Scholar 

  • Toews D, Boutilier R, Todd L, Fuller N (1978) Carbonic anhydrase in the Amphibia. Comp Biochem Physiol 59A: 211–213

    Article  Google Scholar 

  • Toews DP, Shelton G, Randall DJ (1971) Gas tensions in the lungs and major blood vessels of the urodele amphibian, Amphiuma tridactylum. J Exp Biol 55: 47–61

    Google Scholar 

  • Tufts BL, Boutilier RG (1989) The absence of rapid chloride/bicarbonate exchange in lamprey erythrocytes: implications for CO2 transport and ion distributions between plasma and erythrocytes in the blood of Petromyzon marinus. J Exp Biol 144: 565–576

    Google Scholar 

  • Van Vliet BN, West NH (1986) Cardiovascular responses to electrical stimulation of the recurrent laryngeal nerve in conscious toads (Bufo marinus). J Comp Physiol B 156: 363–375

    Article  Google Scholar 

  • Wasserzug RJ, Paul RD, Feder ME (1981) Cardiorespiratory synchrony in anuran larvae (Xenopus laevis, Pachymedusa dacnicolor, and Rana herlandieri). Comp Biochem Physiol 70A: 329–334

    Article  Google Scholar 

  • West NH, Burggren WW (1982) Gill and lung ventilatory responses to steady-state aquatic hypoxia and hyperoxia in the bullfrog tadpole. Respir Physiol 47: 165–176

    Article  PubMed  CAS  Google Scholar 

  • West NH, Burggren WW (1983) Reflex interactions between aerial and aquatic gas exchange organs in larval bullfrogs. Am J Physiol 244: R770–R777

    PubMed  CAS  Google Scholar 

  • West NH, Burggren WW (1984) Control of pulmonary and cutaneous blood flow in the toad, Bufo marinus. Am J Physiol 247: R884–R894

    PubMed  CAS  Google Scholar 

  • West NH, Jones DR (1975) Breathing movements in the frog Rana pipiens. I. The mechanical events associated with lung and buccal ventilation. Can J Zool 53: 332–344

    Google Scholar 

  • West NH, Topor ZL, Van Vliet BN (1987) Hypoxemic threshold for lung ventilation in the toad. Respir Physiol 70: 377–390

    PubMed  CAS  Google Scholar 

  • White FN (1989) Carbon dioxide homeostasis. In: Wood SC (ed) Comparative pulmonary physiology: current concepts, vol 39. Lung biology in health and disease. Marcel Dekker, New York, pp 439–466

    Google Scholar 

  • Winokur RM (1973) Adaptive modifications of buccal mucosae in turtles. Am Zool 13: 1347–1348

    Google Scholar 

  • Wood SC (1982) The effect of oxygen affinity on arterial PO2 in animals with central vascular shunts. J Appl Physiol 53: 1360–1364

    PubMed  CAS  Google Scholar 

  • Wood SC (1984) Cardiovascular shunts and oxygen transport in lower vertebrates. Am J Physiol 16: 3–14

    Google Scholar 

  • Wood SC, Hicks JW (1985) Oxygen homeostasis in vertebrates with cardiovascular shunts. In: Johansen K, Burggren WW (eds) Cardiovascular shunts. Alfred Benzon Symposium 21: Munksgaard, Copenhagen, pp 354–366

    Google Scholar 

  • Wood SC, Lenfant CJM (1976) Respiration: mechanics, control, and gas exchange. In: Gans C, Dawson WR (eds) Biology of the Reptilia, vol 5. Physiology. Academic Press, New York, pp 225–274

    Google Scholar 

  • Wright WG, Raymond JA (1978) Air-breathing in a California sculpin. J Exp Zool 203: 171–176

    Article  Google Scholar 

  • Wright PA, Heming TA, Randall DJ (1986) Downstream pH changes in water flowing over the gills of rainbow trout. J Exp Biol 126: 499–512

    Google Scholar 

  • Yu K, Woo NY (1985) Effects of ambient oxygen tension and temperature on the bimodal respiration of an air-breathing teleost, Channa maculata. Physiol Zool 58: 181–189

    Google Scholar 

  • Zander CD (1972) Beziehungen zwischen Körperbau und Lebensweise bei Blenniidae (Pisces) aus dem Roten Meer. I. Äußere Morphologie. Mar Biol 13: 238–246

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Boutilier, R.G. (1990). Control and Co-Ordination of Gas Exchange in Bimodal Breathers. In: Boutilier, R.G. (eds) Vertebrate Gas Exchange. Advances in Comparative and Environmental Physiology, vol 6. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-75380-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-75380-0_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-75382-4

  • Online ISBN: 978-3-642-75380-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics