Skip to main content

Hemoglobin Physiology in Vertebrate Animals: a Cautionary Approach to Adaptationist Thinking

  • Chapter
Vertebrate Gas Exchange

Part of the book series: Advances in Comparative and Environmental Physiology ((COMPARATIVE,volume 6))

Abstract

The apparent “goodness of fit” of animals to environments brings into focus immediate adaptations to local conditions. This interaction of organism and environment has led us into a particular way of thinking about the role of hemoglobin in oxygen transport, in which the near omnipotence of natural selection is acknowledged in the design of the protein for function under particular circumstances (e.g., Powers 1980; Perutz 1983). The neo-Darwinian concept of adaptation implies pre-existent problems to which animals are fitted by a dynamical process, the process being “adaptation” (Lewontin 1978). In this view, there is a tendency to perceive natural selection as operating with few constraints, and non- adaptive features, such as those imposed by phyletic inertia, structural and ontogenetic constraints, play only a minor role in shaping the physiological traits of animals.

“Some organisms use less oxygen than others under conditions that seem to entail the same effort. Can we say that those organisms that consume less oxygen are more efficient and better adapted? Certainly not, because as long as they are alive, they have all met the requirements for an uninterrupted ontogeny. Comparisons about efficiency belong to the realm of the observer’s descriptions; they are not directly related to what happens in the individual histories of conservation of adaptation.” (Maturana and Varela 1987)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barnikol R, Burkhard O (1979) The fine structure of O2 Hb binding in animals: Salmo irideus. In: Gilles R (ed) Animals and environmental fitness. Pergamon, Oxford, pp 47–48

    Google Scholar 

  • Bartlett GR (1978) Phosphate compounds in reptilian and avian red blood cells; developmental changes. Comp Biochem Physiol 61 A: 191–202

    Google Scholar 

  • Bartlett GR (1980) Phosphate compounds in vertebrate red blood cells. Am Zool 20: 103–114

    CAS  Google Scholar 

  • Bartlett GR (1982) Developmental changes of phosphates in red cells of the emu and the rhea. Comp Biochem Physiol 73A: 129–134

    Article  CAS  Google Scholar 

  • Bauer C, Jung H-D (1975) A comparison of respiratory properties of sheep haemoglobin A and B. J Comp Physiol 102: 167–172

    CAS  Google Scholar 

  • Black CP, Tenney SM (1980) Oxygen transport during progressive hypoxia in high-altitude and sea-level waterfowl. Respir Physiol 39: 217–239

    Article  PubMed  CAS  Google Scholar 

  • Bock WJ (1980) The definition and recognition of biological adaptation. Am Zool 20: 217–227

    Google Scholar 

  • Boutilier RG, Shelton G (1986) Respiratory properties of blood from voluntarily and forcibly submerged Xenopus laevis. J Exp Biol 121: 285–300

    Google Scholar 

  • Brady RH (1982) Dogma and doubt. Biol J Linn Soc 17: 79–96

    Article  Google Scholar 

  • Bridges CR, Pelster B, Scheid P (1985) Oxygen binding in blood of Xenopus laevis ( Amphibia) and evidence against Root effect. Respir Physiol 61: 125–136

    Article  PubMed  CAS  Google Scholar 

  • Brittain T (1987 a) A possible role for protein dissociation in the functioning of embryonic haemoglobins. J Exp Biol 127:443–447

    Google Scholar 

  • Brittain T (1987 b) The Root effect. Comp Biochem Physiol 86B:473–481

    Google Scholar 

  • Brittain T, Wells RMG (1983) Review: oxygen transport in early mammalian development: the molecular physiology of embryonic hemoglobins. In: Johnson M (ed) Mammalian development, vol 5. Elsevier, Amsterdam, Chapt 4, pp 135–154

    Google Scholar 

  • Brookfield JFY (1982) Adaptation and functional explanation in biology. Evolut Theory 5: 281–290

    Google Scholar 

  • Brunori M (1975) Molecular adaptation to physiological requirements: the hemoglobin system of trout. In: Horecker BL, Stadtman ER (eds) Current topics in cellular regulation, vol 9. Academic Press, London, pp 1–39

    Google Scholar 

  • Brunori M, Bellelli A, Giardina B, Condo S, Perutz MF (1987) Is there a Root effect in Xenopus hemoglobin? FEBS Lett 221: 161–166

    Article  PubMed  CAS  Google Scholar 

  • Burggren WW, Dupre RK, Wood SC (1987) Allometry of red cell oxygen binding and hemotology in larvae of the salamander, Ambystoma tigrinum. Respir Physiol 70: 73–84

    Article  PubMed  CAS  Google Scholar 

  • Butler PJ, Jones DR (1983) The comparative physiology of diving in vertebrates. In: Lowenstein D (ed) Advances in comparative physiology and biochemistry. Academic Press, New York, pp 180–364

    Google Scholar 

  • Carrell RW (1980) Hemoglobinopathies in Oceania. Hemoglobin 4: 427–429

    Article  PubMed  CAS  Google Scholar 

  • Cech J J, Laurs RM, Graham JB (1984) Temperature-induced changes in blood gas equilibria in the albacore, Thunnus alalunga, a warm-bodied tuna. J Exp Biol 109: 21–34

    Google Scholar 

  • Chanut in A, Curnish RR (1967) Effect of organic and inorganic phosphates on the oxygen equilibrium of human erythrocytes. Arch Biochem Biophys 121: 96–102

    Google Scholar 

  • Dickerson RE, Geis I (1983) Hemoglobin: structure, function, evolution, and pathology. Benjamin Cummihgs, Menlo Park CA

    Google Scholar 

  • Dobson GP, Wood SC, Daxboeck C, Perry SF (1986) Intracellular buffering and oxygen transport in the pacific blue marlin (Makaira nigricans): adaptations to high speed swimming. Physiol Zool 59: 150–156

    Google Scholar 

  • Dodgson SJ, Holland RAB (1983) The reaction kinetics of four sheep haemoglobins with identical α-chains. Respir Physiol 53: 31–45

    Article  PubMed  CAS  Google Scholar 

  • Eaton JW (1974) Oxygen affinity and environmental adaptation. Ann NY Acad Sci 241: 491–504

    Article  PubMed  CAS  Google Scholar 

  • Feder ME (1988) The analysis of physiological diversity. In: Feder ME, Bennet AF, Burggren WW, Huey RB (eds) New directions in ecological physiology. Cambridge University Press, Cambridge

    Google Scholar 

  • Fyhn UEH, Fyhn HJ, Davis BJ, Poers DA, Fink WL, Garlick RL (1979) Hemoglobin heterogeneity in Amazonian fishes. Comp Biochem Physiol 62A: 39–66

    Article  Google Scholar 

  • Giles MA, Randall DJ (1980) Oxygenation characteristics of the polymorphic hemoglobins of coho salmon (Oncorhynchus kisutch) at different developmental stages. Comp Biochem Physiol 65A: 265–271

    Article  Google Scholar 

  • Gould SJ (1982) Darwinism and the expansion of evolutionary theory. Science 216: 380–387

    Article  PubMed  CAS  Google Scholar 

  • Gould SJ (1986) Archetype and adaptation. Nat Hist 10: 16–28

    Google Scholar 

  • Gould SJ, Lewontin RC (1979) The spandrels of San Marco and the Panglossian paradigm: a critique of the adaptationist programme. Proc R Soc Lond B 205: 581–598

    Article  PubMed  CAS  Google Scholar 

  • Grigg GC (1974) Respiratory function of blood in fishes. In: Florkin M, Scheer BT (eds) Chemical zoology, vol VIII. Academic Press, London, pp 332–368

    Google Scholar 

  • Hazard ES, Hutchison VH (1982) Distribution of acid-soluble phosphates in the erythrocytes of selected species of amphibians. Comp Biochem Physiol 73A: 111–124

    Article  CAS  Google Scholar 

  • Heisler N (1984) Acid-base regulation in fishes. In: Randall DJ, Hoar WS (eds) Fish physiology XA. Academic Press, London, pp 315–401

    Google Scholar 

  • Hemmingsen EA, Douglas EL (1970) Respiratory characteristics of the hemoglobin-free fish Chaenocephalus aceratus. Comp Biochem Physiol 33: 733–744

    Article  PubMed  CAS  Google Scholar 

  • Hemmingsen EA, Douglas EL, Grigg GC (1969) Oxygen consumption in an Antarctic hemoglobin-free fish, Pagetopsis macropterus, and in three species of Notothenia. Comp Biochem Physiol 29: 467–470

    Article  PubMed  CAS  Google Scholar 

  • Hill AV (1910) The possible effects of the aggregation of haemoglobin on its dissociation curve. J Physiol Lond 40:iv–vii

    Google Scholar 

  • Hubbard R (1982) The theory and practice of genetic reductionism - from Mendel’s laws to genetic engineering. In: Rose S (ed) Towards a liberatory biology. Allison and Busby, New York, pp 85–102

    Google Scholar 

  • Hughes A J, Lambert DM (1984) Functionalism, structuralism, and “ways of seeing”. J Theor Biol 111: 787–800

    Article  Google Scholar 

  • Ikeda-Saito M, Yonetani T, Gibson QH (1983) Oxygen equilibrium studies on hemoglobin from the bluefin tuna (Thunnus thynnus). J Mol Biol 168: 673–686

    Article  PubMed  CAS  Google Scholar 

  • Ingermann RL, Terwilliger RC (1982) Presence and possible function of Root effect hemoglobins in fishes lacking functional swim bladders. J Exp Zool 220: 171–177

    Article  PubMed  CAS  Google Scholar 

  • Johansen K, Weber RE (1976) On the adaptability of haemoglobin function to environmental conditions. In: Davies PS (ed) Perspectives in experimental biology, vol 1. Pergamon Press, Oxford, pp 219–234

    Google Scholar 

  • Johansen K, Berger M, Bicudo JEPW, Ruschi A, de Almeida PJ (1987) Respiratory properties of blood and myoglobin in hummingbirds. Physiol Zool 60: 269–278

    Google Scholar 

  • Jokumsen A, Weber RE (1980) Haemoglobin-oxygen binding properties in the blood of Xenopus laevis, with special reference to the influences of aestivation and of temperature and salinity acclimation. J Exp Biol 86: 19–37

    CAS  Google Scholar 

  • Jones DR, Brill RW, Mense DC (1986) The influence of blood gas properties on gas tensions and pH of ventral and dorsal aortic blood in free-swimming tuna, Euthynnus affinis. J Exp Biol 120: 201–213

    Google Scholar 

  • Kim HD, Zeidler RB, Sallis JD, Nichol SC, Isaacks RE (1981) Adenosine triphosphate-deficient erythrocytes of the egg-laying mammal, echidna (Tachyglossus aculeatus). Science 213: 1517–1519

    Article  PubMed  CAS  Google Scholar 

  • Krimbas CB (1984) On adaptation, neo-Darwinian tautology, and population fitness. Evol Biol 17: 1–57

    Google Scholar 

  • Lapennas GN, Lutz PL (1982) Oxygen affinity of sea turtle blood. Respir Physiol 48: 59–74

    Article  PubMed  CAS  Google Scholar 

  • Lapennas GN, Reeves RB (1983 a) Oxygen affinity and equilibrium curve shape in blood of chicken embryos. Respir Physiol 52: 13–26

    Article  CAS  Google Scholar 

  • Lapennas GN, Reeves RB (1983 b) Oxygen affinity of blood of adult domestic chicken and red jungle fowl. Respir Physiol 52: 27–39

    Article  CAS  Google Scholar 

  • Lehmann H., Huntsman RG (1974) Man’s haemoglobins. North-Holland, Amsterdam

    Google Scholar 

  • Lewontin RC (1978) Adaptation. Sci Am 239: 156–169

    Article  Google Scholar 

  • Lutz P (1980) On the oxygen affinity of bird blood. Am Zool 20: 187–198

    CAS  Google Scholar 

  • Lutz PL, Bentley TB (1985) Respiratory physiology of diving in the sea turtle. Copeia 1985 (3): 671–679

    Article  Google Scholar 

  • Lutz PL, Longmuir IS, Schmidt-Nielsen K (1973) Dissociation curve of bird blood and effect of red cell oxygen consumption. Respir Physiol 17: 269–275

    Article  PubMed  CAS  Google Scholar 

  • Lutz PL, Longmuir IS, Schmidt-Nielsen K (1974) Oxygen affinity of bird blood. Respir Physiol 20: 325–330

    Article  PubMed  CAS  Google Scholar 

  • Lykkeboe G, Johansen K (1978) An O2-Hb “paradox” in frog blood? (n-values exceeding 4.0). Respir Physiol 35: 119–127

    Article  PubMed  CAS  Google Scholar 

  • Maginniss LA (1985) Red cell organic phosphates and Bohr effects in house sparrow blood. Respir Physiol 59: 93–103

    Article  PubMed  CAS  Google Scholar 

  • Maginniss LA, Song YK, Reeves RB (1980) Oxygen equilibria of ectotherm blood containing multiple hemoglobins. Respir Physiol 42: 329–343.

    Article  PubMed  CAS  Google Scholar 

  • Maginniss LA, Olszowka A J, Reeves RB (1986) Oxygen equilibrium curve shape and allohemoglobin interaction in sheep whole blood. Am J Physiol 250: R298–305

    PubMed  CAS  Google Scholar 

  • Matsuura MSA, Ogo SH, Focesi A (1987) Dimer-tetramer transition in hemoglobins from Liophis miliaris - I. Effect of organic polyphosphates. Comp Biochem Physiol 86A: 683–687

    Google Scholar 

  • Maturana HR, Varela FJ (1987) The tree of knowledge: the biological roots of understanding. Shambhala Publications, Boston

    Google Scholar 

  • McClure HE (1974) Migration and survival of the birds of South East Asia. SEATO Medical Project, Publ US Army, Bangkok

    Google Scholar 

  • Mickleson KNP, Dixon M, Hill PJ, Black R, Eales M, Rutherford J, Yakas J, Trent RJ (1985) Influence of α-thalassaemia on haematological parameters in Polynesian neonates. NZ Med J 98: 1036–1038

    CAS  Google Scholar 

  • Monod J (1972) Chance and necessity. Collins London

    Google Scholar 

  • Newton MF, Peters J (1983) Physiological variation of mouse haemoglobins. Proc R Soc Lond B 218: 443–453

    Article  PubMed  CAS  Google Scholar 

  • O’Grady RT (1984) Evolutionary theory and teleology. J Theror Biol 107: 563–578

    Article  Google Scholar 

  • O’Grady RT (1985) Historical processes, evolutionary explanations, and problems with teleology. Can J Zool 64: 1010–1020

    Article  Google Scholar 

  • Perutz MF (1983) Species adaptation in a protein molecule. Mol Biol Evol 1: 1–28

    PubMed  CAS  Google Scholar 

  • Perutz MF (1986) A new view of Darwinism. New Scientist, 2 Oct 1986: 36–38

    Google Scholar 

  • Perutz MF, Brunori M (1982) Stereochemistry of cooperative effects in fish and amphibian hemoglobins. Nature 291: 682–684

    Article  Google Scholar 

  • Petschow D, Wurdinger I, Baumann R, Duhm J, Braunitzer G, Bauer C (1977) Causes of high blood-oxygen affinity of animals living at high altitude. J Appl Physiol 42: 139–143

    PubMed  CAS  Google Scholar 

  • Popper KR (1972) The logic of scientific discovery. Hutchinson, London

    Google Scholar 

  • Powers DA (1972) Hemoglobin adaptation for fast and slow water habitats in sympatric catostomid fishes. Science 177: 360–362

    Article  PubMed  CAS  Google Scholar 

  • Powers DA (1974) Structure, function, and molecular ecology of fish hemoglobins. Ann NY Acad Sci 241: 472–489

    Article  PubMed  CAS  Google Scholar 

  • Powers DA (1980) Molecular ecology of teleost fish hemoglobins: strategies for adapting to changing environments. Am Zool 20: 139–162

    CAS  Google Scholar 

  • Root RW (1931) The respiratory function of the blood of marine fishes. Biol Bull 61: 427–456

    Article  CAS  Google Scholar 

  • Routley R (1984) Maximizing, satisficing, satisizing: the difference in real and rational behaviour under rival paradigms. Discussion papers in environmental philosophy no 10. Australian National University, Canberra

    Google Scholar 

  • Stratton LP, Duffy LK (1976) Hemoglobin polymorphism in Microtus pennsylvanicus. Comp Biochem Physiol 54B: 413–415

    CAS  Google Scholar 

  • Trent RJ, Mickleson KNP, Wilkinson T (1985) Alpha globin gene rearrangements in Polynesians are not associated with malaria. Am J Hematol 18: 431–433

    Article  PubMed  CAS  Google Scholar 

  • Tucker VA (1968) Respiratory physiology of house sparrows in relation to high-altitude flight. J Exp Biol 48: 55–66

    PubMed  CAS  Google Scholar 

  • Von Baer KE (1828) Entwicklungsgeschichte der Tiere. Bornträger, Königsberg

    Google Scholar 

  • Weber RE (1982) Intraspecific adaptation of hemoglobin function in fish to oxygen availability. In: Addink ADF, Spronk N (eds) Exogenous and endogenous influences on metabolic and neural control. Pergamon, Oxford, pp 87–102

    Google Scholar 

  • Weber RE, de Wilde JAM (1976) Multiple haemoglobins in plaice and flounder and their functional properties. Comp Biochem Physiol 54B: 433–437

    Google Scholar 

  • Weber RE, Wells RMG (1989) Hemoglobin structure and function. In: Wood SC (ed) Comparative pulmonary physiology: current concepts. Lung biology in health and disease, vol 39. Marcel Dekker, New York, pp 279–310

    Google Scholar 

  • Weber RE, Wells RMG, Rossetti JE (1985) Adaptations to neoteny in the salamander, Necturus maculosus. Blood respiratory properties and interactive effects of pH, temperature and ATP on hemoglobin oxygenation. Comp Biochem Physiol 80A: 495–501

    Google Scholar 

  • Weber RE, Kleinschmidt T, Braunitzer G (1987) Embryonic pig hemoglobins Gower I (ζ2ɛ2), Gower II (α2ɛ2), Heide I (ζ2 γ2) and Heide II (α2γ2): oxygen-binding functions related to structure and embryonic oxygen supply. Respir Physiol 69: 347–357

    Article  PubMed  CAS  Google Scholar 

  • Wells RMG (1979) Haemoglobin-oxygen affinity in developing erythroid cells of the mouse. J Comp Physiol 129: 333–338

    CAS  Google Scholar 

  • Wells RMG (1987) Respiration of Antarctic fishes from McMurdo Sound. Comp Biochem Physiol 88A: 417–424

    Article  CAS  Google Scholar 

  • Wells RMG, Brittain T (1981) Transition to cooperative oxygen-binding by embryonic mice. J Exp Biol 90: 351–355

    PubMed  CAS  Google Scholar 

  • Wells RMG, Davie PS (1985) Oxygen binding by the blood and hematological effects of capture stress in two big game fish: mako shark and striped marlin. Comp Biochem Physiol 81A: 643–646

    Article  CAS  Google Scholar 

  • Wells RMG, Weber RE (1985) Fixed acid and carbon dioxide effects as functions of hemoglobin-oxygen saturation and intra-erythrocytic pH in the blood of the frog, Rana temporaria. Pflügers Arch Eur J Physiol 403: 7–12

    Article  CAS  Google Scholar 

  • Wells RMG, Weber RE (1985) Fixed acid and carbon dioxide effects as functions of hemoglobin-oxygen saturation and intra-erythrocytic pH in the blood of the frog, Rana temporaria. Plügers ARch Eur J Physiol 403: 7–12

    Article  CAS  Google Scholar 

  • Wood SC (1980) Adaptation of red blood cell function to hypoxia and temperature in ectothermic vertebrates. Am Zool 20: 163–172

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wells, R.M.G. (1990). Hemoglobin Physiology in Vertebrate Animals: a Cautionary Approach to Adaptationist Thinking. In: Boutilier, R.G. (eds) Vertebrate Gas Exchange. Advances in Comparative and Environmental Physiology, vol 6. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-75380-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-75380-0_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-75382-4

  • Online ISBN: 978-3-642-75380-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics