Skip to main content

Control and Co-Ordination of Gas Exchange in Air Breathers

  • Chapter

Part of the book series: Advances in Comparative and Environmental Physiology ((COMPARATIVE,volume 6))

Abstract

A wealth of information exists on the control and co-ordination of gas exchange in air-breathing vertebrates. Fortunately, much of this literature has been reviewed, in depth, in the last few years2. These reviews give an excellent summary of existing knowledge and, consequently, the emphasis of the present chapter has been placed on a selective review of some of the more recent advances which have been made in the field, particularly emphasizing those areas about which little is yet known but which are now ripe for further study.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abdel-Magied EM, King AS (1978) The topographical anatomy and blood supply of the carotid body region of domestic fowl. J Anat 126: 535–546

    PubMed  CAS  Google Scholar 

  • Adams WE (1958) The comparative morphology of the carotid body and carotid sinus. Thomas, Springfield, IL

    Google Scholar 

  • Adams WE (1962) The carotid sinus-carotid body problem in the chelonia (with a note on a Foramen of Panizza in Dermochelys). Arch Int Pharmacodyn 139: 28–37

    PubMed  CAS  Google Scholar 

  • Adrian ED, Buytendijk FJJ (1931) Potential changes in the isolated brain stem of goldfish. J Physiol 71: 121–135

    PubMed  CAS  Google Scholar 

  • Agostoni E, Campbell GJM, Freedman S (1970) Energetics. In: Campbell GJM, Agostoni E, Newsom Davis J (eds) The respiratory muscles. Lloyd-Luke, London

    Google Scholar 

  • Bainton CR (1978) Canine ventilation after acid-base infusions, exercise, and carotid body denervation. J Appl Physiol 44: 28–35

    PubMed  CAS  Google Scholar 

  • Ballam GD, Donaldson LA (1988) Effect of venous (gut) CO2 loading on intrapulmonary gas fractions and ventilation in the Tegu lizard. J Comp Physiol 158: 591–600

    CAS  Google Scholar 

  • Ballintijn CM (1982) Neural control of respiration in fishes and mammals. In: Addink ASF, Spronk N (eds) Exogenous and endogenous influences on metabolic and neural control, vol 1. Pergamon, New York

    Google Scholar 

  • Ballintijn CM (1988) Evolution of central nervous control of ventilation in vertebrates. In: Taylor EW (ed) The neurobiology of the cardio-respiratory system. Manchester University Press, Manchester

    Google Scholar 

  • Banzett RB, Burger RE (1977) Responses of avian intrapulmonary chemoreceptors to venous Co2 and ventilatory gas flow. Respir Physiol 29: 63–72

    Article  PubMed  CAS  Google Scholar 

  • Bartoli A, Bystrzycka E, Guz A, Jain SK, Noble MIM, Trenchard DW (1973) The effect of carbon dioxide in the airways and alveoli on ventilation; a vagal refex studied in the dog. J Physiol 230: 449–465

    PubMed  CAS  Google Scholar 

  • Bartoli A, Cross BA, Guz A, Huszczuk A, Jeffries R (1975) The effect of varying tidal volume on the associated phrenic motoneurone output: studies of vagal and chemical feedback. Respir Physiol 25: 136–155

    Article  Google Scholar 

  • Baudinette RV, Gannon BJ, Runciman WB, Wells S, Love JB (1987) Do cardiorespiratory frequencies show entrainment with hopping in the tammar wallaby? J Exp Biol 129: 251–263

    PubMed  CAS  Google Scholar 

  • Benchetrit G, Dejours P (1980) Ventilatory Co2 drive in the tortoise Testudo horsfieldi. J Exp Biol 87: 229–236

    PubMed  CAS  Google Scholar 

  • Benchetrit G, Armand J, Dejours P (1977) Ventilatory chemoreflex drive in the tortoise Testudo horsfieldi. Respir Physiol 31: 183–191

    Article  PubMed  CAS  Google Scholar 

  • Berger AJ, Mitchell RAM, Severinghaus JW (1977) Regulation of respiration. N Engl J Med 297: 194–201

    Article  PubMed  CAS  Google Scholar 

  • Berkenbosch A, Heringe J, Olievier CN, Kruyt EW (1979) Artificial perfusion of the ponto-medullary region of cats, a method for separation of central and peripheral effects of chemical stimulation of ventilation. Respir Physiol 37: 381–390

    Article  PubMed  CAS  Google Scholar 

  • Bickler PE (1984) Co2 balance of a heterothermic rodent: comparison of sleep, torpor, and awake states. Am J Physiol 246: R49–R55

    PubMed  CAS  Google Scholar 

  • Biscoe TJ, Purves MJ, Sampson SR (1970) The frequency of nerve impulses in single carotid body chemoreceptor afferent fibers recorded in vivo with intact circulation. J Physiol 208: 121–131

    PubMed  CAS  Google Scholar 

  • Black AMS, McCloskey DI, Torrance RW (1971) The responses of carotid body chemoreceptors in the cat to sudden changes of hypercapnic and hypoxic stimuli. Respir Physiol 13: 36–49

    Article  PubMed  CAS  Google Scholar 

  • Black CP, Tenney SM (1980) Pulmonary hemodynamic responses to acute and chronic hypoxia in two waterfowl species. Comp Biochem Physiol 67 A: 291–293

    Google Scholar 

  • Bledsoe SW, Hornbein TF (1981) Central chemoreceptors and the regulation of their chemical environment. In: Lenfant C (ed) Lung biology in health and disease, vol 17. Regulation of breathing, part 1. Marcel Dekker, New York

    Google Scholar 

  • Boggs DF, Birchard GF (1983) Relationship between haemoglobin O2 affinity and the ventilatory response to hypoxia in the rhea and pheasant. J Exp Biol 102: 347–352

    PubMed  CAS  Google Scholar 

  • Boggs DF, Kilgore DL (1983) Ventilatory responses of the burrowing owl and bobwhite to hypercarbia and hypoxia. J Comp Physiol 149: 527–533

    Google Scholar 

  • Boggs DF, Kilgore DL, Birchard GF (1984) Minireview: respiratory physiology of burrowing animals and birds. Comp Biochem Physiol 77A: 1–7

    Article  Google Scholar 

  • Bouverot P (1978) Control of breathing in birds compared with mammals. Physiol Rev 58: 604–655

    PubMed  CAS  Google Scholar 

  • Bouverot P, Leitner LM (1972) Arterial chemoreceptors in the domestic fowl. Respir Physiol 15: 310–320

    Article  PubMed  CAS  Google Scholar 

  • Brackenbury JH, Gleeson M (1983) Effects of PCo2 on respiratory pattern during thermal and exercise hyperventilation in domestic fowl. Respir Physiol 54: 109–119

    Article  PubMed  CAS  Google Scholar 

  • Bramble DM, Carrier DR (1983) Running and breathing in mammals. Science 219: 251–256

    Article  PubMed  CAS  Google Scholar 

  • Brooks JG III, Tenney SM (1968) Ventilatory responses of llama to hypoxia at sea level and high altitude. Respir Physiol 5: 269–278

    Article  PubMed  Google Scholar 

  • Burger RE, Barker MR, Nye PCG, Powell FL (1978) Effects of intrapulmonary chemoreceptors in perfused and non-perfused lungs. In: Piiper J (ed) Respiratory function in birds. Adult and embryonic. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Burger RE, Estavillo JA (1978) The alteration of CO2 respiratory sensitivity in chickens by thoracic visceral denervation. Respir Physiol 32: 251–263

    Article  PubMed  CAS  Google Scholar 

  • Burger RE, Osborne JL, Banzett RB (1974) Intrapulmonary chemoreceptors in gallus domesticus: adequate stimulus and functional localization. Respir Physiol 22: 87–97

    Article  PubMed  CAS  Google Scholar 

  • Burggren W (1985) Hemodynamics and regulation of central cardiovascular shunts in reptiles. In: Johansen K, Burggren WW (eds) Cardiovascular shunts. Alfred Benzon Symposium 21. Munksgaard, Copenhagen

    Google Scholar 

  • Busa WB, Nuccitelli R (1984) Metabolic regulation via intracellular pH. Am J Physiol 246: R409–R438

    PubMed  CAS  Google Scholar 

  • Cain SM (1970) Increased oxygen uptake with passive hyperventilation of dogs. J Appl Physiol 28: 4–7

    PubMed  CAS  Google Scholar 

  • Cameron JN (1984) Acid-base status of fish at different temperatures. Am J Physiol 246: R452–R459

    PubMed  CAS  Google Scholar 

  • Carrier DR (1987) Lung ventilation during walking and running in four species of lizards. Exp Biol 47: 33–42

    PubMed  CAS  Google Scholar 

  • Clark FJ, Von Euler C (1972) On the regulation of depth and rate of breathing. J Physiol 222: 267–295

    PubMed  CAS  Google Scholar 

  • Coleridge HM, Coleridge JCG (1986) Reflexes evoked from tracheobronchial tree and lungs. In: Fishman AP, Cherniak NS, Widdicombe JG, Geiger SR (eds) Handbook of physiology, section 3. The respiratory system, vol II. Control of breathing, part 2. American Physiological Society, Bethesda

    Google Scholar 

  • Coleridge HM, Coleridge JCG, Howe A (1967) A search for pulmonary arterial chemoreceptors in the cat, with a comparison of the blood supply of the aortic bodies in the newborn and adult mammal. J Physiol 191: 353–374

    PubMed  CAS  Google Scholar 

  • Cooper KG, Veale WL (1986) Effects of temperature on breathing. In: Fishman AP, Cherniak NS, Widdicombe JG, Geiger SR (eds) Handbook of physiology, section 3. The respiratory system, vol II. Control of breathing, part 2. American Physiological Society, Bethesda

    Google Scholar 

  • Courtice GP (1980) Stimulation of carotid arterial chemoreceptors by hypoxia and hypercapnia in a lizard. In: Proc 27th Int Congr Physiol Sci, Budapest 14: 368

    Google Scholar 

  • Cragg PA, Drysdale DB (1983) Interaction of hypoxia and hypercapnia on ventilation, tidal volume and respiratory frequency in the anesthetized rat. J Physiol 341: 477–493

    PubMed  CAS  Google Scholar 

  • Cropp GJA, Comroe JH Jr (1961) Role of mixed venous blood PCo2 in respiratory control. J Appl Physiol 16: 1029–1033

    PubMed  CAS  Google Scholar 

  • Cross BA, Jones PW, Guz A (1980) The role of vagal afferent information during inspiration in determining phrenic motoneurone output. Respir Physiol 39: 149–167

    Article  PubMed  CAS  Google Scholar 

  • Cunningham DJC (1974) Integrative aspects of the regulation of breathing in man. Q Rev Biophys 6: 433–483

    Article  Google Scholar 

  • Cunningham DJC, Robbins PA, Wolff CB (1986) Integration of respiratory responses to changes in alveolar partial pressures of CO2 and O2 and in arterial pH. In: Fishman AP, Cherniak NS, Widdicombe JG, Geiger SR (eds) Handbook of physiology, section 3. The respiratory system, vol II. Control of breathing, part 2. American Physiological Society, Bethesda

    Google Scholar 

  • D’Angelo E, Agostoni E (1975) Tonic vagal influences on inspiratory duration. Respir Physiol 24: 287–302

    Article  Google Scholar 

  • Darden TR (1972) Respiratory adaptations of a fossorial mammal, the pocket gopher (Thomomys bottae). J Comp Physiol 78: 121–137

    Article  CAS  Google Scholar 

  • Davey NJ, Seller TJ (1987) Brain mechanisms for respiratory control. In: Seller T (ed) Bird respiration. CRC Press, Boca Raton, FL

    Google Scholar 

  • Davies DG (1978) Temperature-induced changes in blood acid base status in the alligator, Alligator mississipiensis. J Appl Physiol 45: 922–926

    PubMed  CAS  Google Scholar 

  • Davies DG, Thomas JL, Smith EN (1982) Effect of body temperature on the ventilatory response to hypercapnia in the awake alligator. J Appl Physiol 52: 114–118

    PubMed  CAS  Google Scholar 

  • Dempsey JA, Forster HV (1982) Mediation of ventilatory adaptations. Physiol Rev 62: 262–346

    PubMed  CAS  Google Scholar 

  • Dempsey JA, Vidruk EH, Mitchell GS (1985) Pulmonary control systems in exercise: update. Fed Proc 44: 2260–2270

    PubMed  CAS  Google Scholar 

  • Douse MA, Mitchell GS (1988) Temperature effects on CO2-sensitive intrapulmonary chemoreceptors in the lizard Tupinambis nigropunctatus. Respir Physiol 72: 327–342

    Article  PubMed  CAS  Google Scholar 

  • Eyzaguirre C, Koyano H (1965) Effects of hypoxia, hypercapnia and pH on the chemoreceptor activity of the carotid body in vitro. J Physiol 178: 385–409

    PubMed  CAS  Google Scholar 

  • Fedde MR, Peterson DF (1970) Intrapulmonary receptor response to changes in airway-gas composition in Gallus domesticus. J Physiol 209: 609–625

    PubMed  CAS  Google Scholar 

  • Fedde MR, Gatz RN, Slama H, Scheid P ( 1974 a) Intrapulmonary CO2 receptors in the duck. I. Stimulus specificity. Respir Physiol 22: 99–114

    Google Scholar 

  • Fedde MR, Gatz RN, Slama H, Scheid P ( 1974 b) Intrapulmonary CO2 receptors in the duck. II.Comparison with mechanoreceptors. Respir Physiol 22: 115–121

    Google Scholar 

  • Fedde MR, Kuhlmann WD, Scheid P (1977) Intrapulmonary receptors in the tegu lizard. I. Sensitivity to CO2. Respir Physiol 29: 35–48

    Article  Google Scholar 

  • Fedde MR, Kiley JP, Powell FL, Scheid P (1982) Intrapulmonary CO2 receptors and control of breathing in ducks: effects of prolonged circulation time to carotid bodies and brain. Respir Physiol 47: 121–140

    Article  PubMed  CAS  Google Scholar 

  • Feldman JL (1986) Neurophysiology of respiration in mammals. In: Bloom FE (ed) Handbook of physiology, section 1. The nervous system, vol IV. American Physiological Society, Bethesda

    Google Scholar 

  • Feldman JL, Smith JC, McCrimmon DR, Ellenberger HH, Speck DF (1988) Generation of respiratory pattern in mammals. In: Cohen A (ed) Neural control of rhythmic movements in vertebrates. John Wiley, New York

    Google Scholar 

  • Fencl V (1986) Acid-base balance in cerebral fluid. In: Fishman AP, Cherniak NS, Widdicombe JG, Geiger SR (eds) Handbook of physiology, section 3. The respiratory system, vol II. Control of breathing, part 1. American Physiological Society, Bethesda

    Google Scholar 

  • Fencl V, Miller TB, Pappenheimer JR (1966) Studies on the respiratory response to disturbances of acid-base balance with deductions concerning ionic composition of cerebral interstitial fluid. Am J Physiol 210: 459–472

    PubMed  CAS  Google Scholar 

  • Fidone SJ, Gonzalez C (1986) Initiation and control of chemoreceptor activity in the carotid body. In: Fishman AP, Cherniak NS, Widdicombe JG, Geiger SR (eds) Handbook of physiology, section 3. The respiratory system, vol II. Control of breathing, part 1. American Physiological Society, Bethesda

    Google Scholar 

  • Finkler J, Iscoe S (1984) Control of breathing at elevated lung volumes in anesthetized cats. J Appl Physiol 56: 839–844

    Article  PubMed  CAS  Google Scholar 

  • Fishman AP, Cherniak NS, Widdicombe JG, Geiger SR (eds) (1986) Handbook of physiology, section 3. The respiratory system, vol II. Control of breathing, parts I and II. American Physiological Society, Bethesda

    Google Scholar 

  • Fitzgerald RS, Lahiri S (1986) Reflex responses to chemoreceptor stimulation. In: Fishman AP, Cherniak NS, Widdicombe JG, Geiger SR (eds) Handbook of physiology, section 3. The respiratory system, vol II. Control of breathing, part 1. American Physiological Society, Bethesda

    Google Scholar 

  • Fitzgerald RS, Parks DC (1971) Effect of hypoxia on carotid chemoreceptor response to carbon dioxide in cats. Respir Physiol 12: 218–229

    Article  PubMed  CAS  Google Scholar 

  • Funk GD, Milsom WK (1987) Changes in ventilation and breathing pattern produced by changing body temperature and inspired CO2 concentration in turtles. Respir Physiol 67: 37–51

    Article  PubMed  CAS  Google Scholar 

  • Furilla RA, Bartlett D Jr (1987) Intrapulmonary receptors in the garter snake, Thamnophis sirtalis. Fed Proc 46: 793

    Google Scholar 

  • Gallego R, Eyzaguirre C, Monti-Bloch L (1979) Thermal and osmotic responses of arterial chemoreceptors. J Neurophysiol 42: 665–680

    PubMed  CAS  Google Scholar 

  • Gatz RN, Fedde MR, Crawford EC Jr (1975) Lizard lungs: CO2-sensitive receptors in Tupinambis nigropunctatus. Experientia 31: 455–456

    Article  PubMed  CAS  Google Scholar 

  • Geiser F (1988) Reduction of metabolism during hibernation and daily torpor in mammals and birds: temperature effect or physiological inhibition. J Comp Physiol B 158: 25–37

    Article  PubMed  CAS  Google Scholar 

  • Glass ML, Johansen K (1976) Control of breathing in Acrochordus javanicus, an aquatic snake. Physiol Zool 49: 328–340

    Google Scholar 

  • Glass ML, Johansen K (1979) Periodic breathing in the crocodile, Crocodylus niloticus: consequences for the gas exchange ratio and control of breathing. J Exp Zool 208: 319–326

    Article  PubMed  CAS  Google Scholar 

  • Glass ML, Wood SC, Hoyt RW, Johansen K (1979) Chemical control of breathing in the lizard, Varanus exanthematicus. Comp Biochem Physiol 62A: 999–1003

    Article  Google Scholar 

  • Glass ML, Wood SC (1983) Gas exchange and control of breathing in reptiles. Physiol Rev 63: 232–260

    PubMed  CAS  Google Scholar 

  • Glass ML, Boutilier RG, Heisler N (1983) Ventilatory control of arterial PO2 in the turtle Chrysemys picta bellii: effects of temperature and hypoxia. J Comp Physiol B 151: 145–153

    Article  Google Scholar 

  • Glass ML, Boutilier RG, Heisler N (1985) Effects of body temperature on respiration, blood gases and acid-base status in the turtle Chrysemys picta bellii. J Exp Biol 114: 37–51

    Google Scholar 

  • Gonzalez F Jr, Fordyce WE, Grodins FS (1977) Mechanism of respiratory responses to intravenous NaHCO2, HC1 and KCN. J Appl Physiol 34: 1075–1079

    Google Scholar 

  • Gratz RK (1978) Ventilation and gas exchange in the diamondback water snake, Natrix rhombifera. J Comp Physiol 127: 299–305

    Google Scholar 

  • Gratz RK (1979) Ventilatory response of the diamondback water snake Natrix rhombifera to hypoxia, hypercapnia and increased oxygen demand. J Comp Physiol 129: 105–110

    Google Scholar 

  • Green JF, Schertel ER, Coleridge HM, Coleridge JCG (1986) Effects of pulmonary arterial PCO2 on slowly adapting pulmonary stretch receptors. J Appl Physiol 60: 2048–2055

    PubMed  CAS  Google Scholar 

  • Grunstein MM, Wyszogrodski I, Milic-Emili J (1975) Regulation of frequency and depth of breathing during expiratory threshold loading in cats. J Appl Physiol 39: 395–404

    PubMed  CAS  Google Scholar 

  • Hall FG (1966) Minimal utilizable oxygen and the oxygen dissociation curve of blood of rodents. J Appl Physiol 21: 375–378

    PubMed  CAS  Google Scholar 

  • Harken AH (1976) Hydrogen ion concentration and oxygen uptake in an isolated canine hindlimb. J Appl Physiol 40: 1–5

    PubMed  CAS  Google Scholar 

  • Hart JS, Roy OZ (1966) Respiratory and cardiac responses to flight in pigeons. Physiol Zool 39: 291–306

    Google Scholar 

  • Hatcher JD, Chiu LK, Jennings DB (1978) Anemia is a stimulus to aortic and carotid chemoreceptors in the cat. J Appl Physiol 44: 696–702

    PubMed  CAS  Google Scholar 

  • Heeringa MS, Berkenbosch A, De Goede J, Olievier CN (1979) Relative contribution of central and peripheral chemoreceptors to the ventilatory response to CO2 during hyperoxia. Respir Physiol 37: 365–379

    Article  PubMed  CAS  Google Scholar 

  • Heisler N (1986) Acid-base regulation in fishes: In: Heisler N (ed) Acid-base regulation in animals. Elsevier Biomedical, Amsterdam Heisler N, Neumann P, Maloiy GMO (1983) The mechanism of intracardiac shunting in the lizard Varanus exanthematicus. J Exp Biol 105:15–31

    Google Scholar 

  • Hey EN, Lloyd BB, Cunningham DJC, Jukes MGM, Bolton DPG (1966) Effects of various respiratory stimuli on the depth and frequency of breathing in man. Respir Physiol 1: 193–205

    Article  PubMed  CAS  Google Scholar 

  • Heymans C, Neil E (1958) Reflexogenic areas of the cardiovascular system. Churchill, London

    Google Scholar 

  • Hitzig BM (1982) Temperature-induced changes in turtle CSF pH and central control of ventilation. Respir Physiol 49: 205–222

    Article  PubMed  CAS  Google Scholar 

  • Hitzig BM, Jackson DC (1978) Central chemical control of ventilation in the unanaesthetized turtle. Am J Physiol 235: R257–R264

    PubMed  CAS  Google Scholar 

  • Hochachka PW, Guppy M (1987) Metabolic arrest and the control of biological time. Harvard University Press, Cambridge MA

    Google Scholar 

  • Hollinshead WH (1946) The function of the abdominal chemoreceptors of the rat and mouse. Am J Physiol 147: 654–660

    PubMed  CAS  Google Scholar 

  • Hornbein TF (ed) (1981) Regulation of breathing, parts I and II, vol 17. Lung Biology in health and disease. Marcel Dekker, New York

    Google Scholar 

  • Hornbein TF, Roos A (1963) Specificity of H+ ion concentration as a carotid chemoreceptors stimulus. J Appl Physiol 18: 580–584

    Google Scholar 

  • Howe A, Pack RJ, Wise JCM (1981) Arterial chemoreceptors in the abdominal vagus of the rat. J Physiol 320: 309–318

    PubMed  CAS  Google Scholar 

  • Hukuhara T (1976) Functional organization of brain stem respiratory neurons and its aferences. In: Duran B (ed) Respiratory centers and afferent systems. INSERM, Paris

    Google Scholar 

  • Hukuhara T, Okada H (1956) On automaticity of the respiratory centers of the catfish and crucian carp. Jpn J Physiol 6: 313–320

    Article  PubMed  CAS  Google Scholar 

  • Ishii K, Ishii K, Kusakabe T (1985) Electrophysiological aspects of reflexogenic area in the chelonian, Geoclemmys reevesii. Respir Physiol 59: 45–54

    Article  PubMed  CAS  Google Scholar 

  • Ishii K, Ishii K, Dejours P (1986) Activity of vagal afferent fibers innervating CO2-sensitive receptors in the tortoise, Testudo hermanni. Jpn J Physiol 36: 1015–1026

    Article  PubMed  CAS  Google Scholar 

  • Jackson DC (1973) Ventilatory response to hypoxia in turtles at various temperatures. Respir Physiol 18: 178–187

    Article  PubMed  CAS  Google Scholar 

  • Jackson DC (1978) Respiratory control in air-breathing ectotherms. In: Davies DG, Barnes CD (eds) Regulation of ventilation and gas exchange. Academic Press, New York

    Google Scholar 

  • Jackson DC, Palmer SE, Meadow WL (1974) The effects of temperature and carbon dioxide breathing on ventilation and acid-base status of turtles. Respir Physiol 20: 131–146

    Article  PubMed  CAS  Google Scholar 

  • Jones DR, Chu C (1988) Effect of denervation of carotid labyrinths on breathing in unrestrained Xenopus laevis. Respir Physiol 73: 243–256

    Article  PubMed  CAS  Google Scholar 

  • Jones DR, Milsom WK (1982) Peripheral receptors affecting breathing and cardiovascular function in nonmammalian vertebrates. J Exp Biol 100: 59–91

    Google Scholar 

  • Jones DR, Purves MJ (1970) The effect of carotid body denervation upon the respiratory response to hypoxia and hypercapnia in the duck. J Physiol 211: 279–294

    PubMed  CAS  Google Scholar 

  • Jones DR, Milsom WK, Butler PJ (1985) Ventilatory response to venous CO2 loading by gut ventilation in ducks. Can J Zool 63: 1232–1236

    Article  Google Scholar 

  • Juch PJW, Ballintijn CM (1983) Tegmental neurons controlling medullary respiratory centre activity in the carp. Respir Physiol 51: 95–107

    Article  PubMed  CAS  Google Scholar 

  • Juch PJW, Luiten PGM (1981) Anatomy of respiratory rhythmic systems in brainstem and cerebellum. Brain Res 230: 51 - 64

    Article  PubMed  CAS  Google Scholar 

  • Kawasaki R (1979) Breathing rhythm-generation in the adult lamprey, Entosphenus japonicus. Jpn J Physiol 29: 327–338

    Article  PubMed  CAS  Google Scholar 

  • Kawasaki R (1984) Breathing rhythm-generation mechanism in the adult lamprey, Lampetra japonica. Jpn J Physiol 34: 319–335

    Article  PubMed  CAS  Google Scholar 

  • Kiley JP, Kuhlmann WD, Fedde MR (1979) Respiratory and cardiovascular responses to exercise in the duck. J Appl Physiol 47: 927–933

    Google Scholar 

  • Kilgore DL Jr, Faraci FM, Fedde MR (1985) Ventilatory and intrapulmonary chemoreceptor sensitivity to CO2 in the burrowing owl. Respir Physiol 62: 325–340

    Article  PubMed  Google Scholar 

  • Kinney JL, White FN (1977) Oxidative cost of ventilation in a turtle, Pseudemys floridana. Respir Physiol 31: 327–332

    Article  PubMed  CAS  Google Scholar 

  • Kiwull P, Wiemer W, Schöne H (1982) The role of the carotid chemoreceptors in the CO2- hyperpnea under hyperoxia. Pflügers Arch 336: 171–186

    Article  Google Scholar 

  • Kiwull-Schöne H, Kiwull P (1979) The role of the vagus nerves in the ventilatory response to lowered PaO2 with intact and eliminated carotid chemoreflexes. Pflügers Arch 381: 1–9

    Article  PubMed  Google Scholar 

  • Kiwull-Schöne H, Ward SA, Kiwull P (1981) The involvement of expiratory termination in the vagally mediated facilitation of ventilatory CO2 responsiveness during hyperoxia. Pflügers Arch 390:63–69

    Google Scholar 

  • Kobayashi S (1971) Comparative cytological studies of the carotid body. 1. Demonstration of monoamine-storing cells by correlated chromaffin reaction and fluorescence histochemistry. Arch Histol Jpn 31: 9–19

    Google Scholar 

  • Kooyman GL, Cornell LH (1981) Flow properties of expiration and inspiration in a trained bottle-nosed porpoise. Physiol Zool 54: 55–61

    Google Scholar 

  • Kruhøffer M, Glass ML, Abe AS, Johansen K (1987) Control of breathing in an amphibian Bufo paracnemius: effects of temperature and hypoxia. Respir Physiol 69: 267–275

    Article  PubMed  Google Scholar 

  • Kunz AL (1987) Peripheral mechanisms in the control of breathing. In: Seller T (ed) Bird respiration. CRC Press, Boca Raton, FL

    Google Scholar 

  • Lahiri S, DeLaney RG (1976) The nature of response of single chemoreceptor fibers of carotid body to changes in arterial PO2 and PCo2-H+. In: Paintal AS (ed) Morphology and mechanisms of chemoreceptors. Navchetan, New Delhi

    Google Scholar 

  • Lahiri S, Mulligan E, Nishino T, Mokashi A, Davies RO (1981) Relative responses of aortic body and carotid body chemoreceptors to carboxyhemoglobinemia. J Appl Physiol 50: 580–586

    PubMed  CAS  Google Scholar 

  • Lauweryns JM, Cokelaere M (1973) Intrapulmonary neuroepithelial bodies: hypoxia-sensitive neuro(chemo)receptors. Experientia 29: 1384–1386

    Article  PubMed  CAS  Google Scholar 

  • Leusen IR (1954) Chemosensitivity of the respiratory center. Influences of changes in the H+ and total buffer concentrations in the cerebral ventricles on respiration. Am J Physiol 176: 45–51

    PubMed  CAS  Google Scholar 

  • Loeschke HH (1982) Central chemosensitivity and the reaction theory. J Physiol 322: 1–24

    Google Scholar 

  • Lomholt JP, Johansen K (1979) Hypoxia acclimation in carp - how it effects O2 uptake, ventilation, and O2 extraction from water. Physiol Zool 52: 38–49

    Google Scholar 

  • Long S, Duffin J (1986) The neuronal determinants of respiratory rhythm. Prog Neurobiol 27: 101–182

    Article  PubMed  CAS  Google Scholar 

  • Lyman CP, Chatfield PO (1955) Physiology of hibernation in animals. Physiol Rev 35: 403–425

    PubMed  CAS  Google Scholar 

  • Malan A (1982) Respiration and acid-base state in hibernation. In: Lyman CP, Willis JS, Malan A, Wang LCH (eds) Hibernation and torpor in mammals and birds. Academic Press, New York

    Google Scholar 

  • Malan A, Arens H, Waechter A (1973) Pulmonary respiration and acid-base state in hibernating marmots and hamsters. Respir Physiol 17: 450–461

    Google Scholar 

  • Malan A, Wilson TL, Reeves RB (1976) Intracellular pH in cold-blooded vertebrates as a function of body temperature. Respir Physiol 28: 29–47

    Article  PubMed  CAS  Google Scholar 

  • Malan A, Rodeau JL, Daull F (1985) Intracellular pH in hibernation and respiratory acidosis in the European hamster. J Comp Physiol 156B: 251–258

    CAS  Google Scholar 

  • Mead J (I960) Control of respiration frequency. J Appl Physiol 15:325–327

    Google Scholar 

  • Milsom WK (1984) The interrelationship between pulmonary mechanics and the spontaneous breathing pattern in the Tokay lizard, Gecko gecko. J Exp Biol 113: 203–214

    Google Scholar 

  • Milsom WK (1988) Control of arrhythmic breathing in aerial breathers. Can J Zool 66: 99–108

    Article  Google Scholar 

  • Milsom WK, Chan P (1986) The relationship between lung volume, respiratory drive and breathing pattern in the turtle, Chrysemys picta. J Exp Biol 120: 233–247

    Google Scholar 

  • Milsom WK, Jones DR (1980) The role of vagal afferent information and hypercapnia in control of the breathing pattern in chelonia. J Exp Biol 87: 53–63

    PubMed  CAS  Google Scholar 

  • Milsom WK, Sadig T (1983) Interaction between norepinephrine and hypoxia on carotid body chemoreceptors in rabbits. J Appl Physiol 55: 1893–1898

    PubMed  CAS  Google Scholar 

  • Milsom WK, Jones DR, Gabbot GRJ (1981) On chemoreceptor control of ventilatory responses to CO2 in unanesthetized ducks. J Appl Physiol 50:R 1121–R1128

    Google Scholar 

  • Milsom WK, McArthur MD, Webb CL (1986) Control of breathing in hibernating ground squirrels. In: Heller HC, Musacchia XJ, Wang LCH (eds) Living in the cold: physiological and biochemical adaptations. Elsevier, New York

    Google Scholar 

  • Mitchell GS (1987) Effects of hypoxemia on phrenic nerve responses to static lung inflation in anesthetized dogs. Respir Physiol 67: 183–195

    Article  PubMed  CAS  Google Scholar 

  • Mitchell GS, Osborne JL (1980) A comparison between carbon dioxide inhalation and increased dead space ventilation in chickens. Respir Physiol 40: 227–239

    Article  PubMed  CAS  Google Scholar 

  • Mitchell GS, Selby BD (1987) Effects of carotid denervation on interactions between lung inflation and PaCO2 in modulating phrenic activity. Respir Physiol 67: 367–378

    Article  PubMed  CAS  Google Scholar 

  • Mitchell GS, Gleeson TT, Bennett AF (1981) Ventilation and acid-base balance during graded activity in lizards. Am J Physiol 240: R29–R37

    PubMed  CAS  Google Scholar 

  • Mitchell GS, Cross BA, Hiramoto T, Scheid P (1982) Interactions between lung stretch and PaCO2 in modulating ventilation in dogs. J Appl Physiol 53: 185–191

    PubMed  CAS  Google Scholar 

  • Mitchell RA (1965) The regulation of respiration in metabolic acidosis and alkalosis. In: Brooks C, Kao F, Lloyd BB (eds) Cerebrospinal fluid and the regulation of respiration. Blackwell, Oxford

    Google Scholar 

  • Molony V (1974) Classification of vagal afferents firing in phase with breathing in Gallus domesticus. Respir Physiol 22: 57–76

    Article  PubMed  CAS  Google Scholar 

  • Morgan MN, Milsom WK (1990) Mechanical and oxidative costs and efficiency of breathing in semi-aquatic turtles (Chrysemys sp.) J Exp Biol (in press)

    Google Scholar 

  • Mulligan E, Lahiri S (1982) Separation of carotid body chemoreceptor responses to O2 and CO2 by oligomycin and by antimycin A. Am J Physiol 242: C200–C206

    PubMed  CAS  Google Scholar 

  • Muratori G (1962) Histological observations on the cervico-thoracic paraganglia of amniotes. Arch Int Pharmadyn Ther 140: 217–226

    CAS  Google Scholar 

  • Muza SR, Frazier DT (1983) Response of pulmonary stretch receptors to shifts of functional residual capacity. Respir Physiol 52: 371–386

    Article  PubMed  CAS  Google Scholar 

  • Nattie E (1986 a) Intracisternal diethylpyrocarbonate inhibits central chemosensitivity in conscious rabbits. Respir Physiol 64:161–176

    Google Scholar 

  • Nattie E (1986b) Diethyl pyrocarbonate (an imidazole binding substance) inhibits rostral VLM CO2 sensitivity. J Appl Physiol 61: 843–850

    PubMed  CAS  Google Scholar 

  • Nielsen B (1962) On the regulation of respiration in reptiles. II. The effect of hypoxia with and without moderate hypercapnia on the respiration and metabolism of lizards. J Exp Biol 39: 107–117

    PubMed  CAS  Google Scholar 

  • Nielsen M, Smith H (1952) Studies on the regulation of respiration in acute hypoxia. Acta Physiol Scand 24: 293–313

    Article  PubMed  CAS  Google Scholar 

  • Nolan WF, Frankel HM (1982) Ventilatory responses to CO2 at different body temperatures in the snake, Coluber constrictor. Experientia 38: 943–944

    Google Scholar 

  • Nye PCG, Powell FL (1984) Steady-state discharge and bursting of arterial chemoreceptors in the duck. Respir Physiol 50: 335–350

    Article  Google Scholar 

  • Orem JM (1986) Respiratory neuronal activity in sleep. In: Edelman NH, Santiago TV (eds) Breathing disorders of sleep. Churchill Livingstone, New York

    Google Scholar 

  • Orem JM (1987) Inspiratory neurons that are activated when inspiration is inhibited behaviorally. Neurosci Lett 83: 282–286

    Article  PubMed  CAS  Google Scholar 

  • Osborne JL, Mitchell GS, Powell F (1977) Ventilatory responses to CO2 in the chicken: intrapulmonary and systemic chemoreceptors. Respir Physiol 30: 368–382

    Article  Google Scholar 

  • Otis AB, Fenn WO, Rahn H (1950) Mechanics of breathing in man. J Appl Physiol 2: 592–607

    PubMed  CAS  Google Scholar 

  • Pappenheimer JR, Fencl V, Heisey SR, Held D (1965) Role of cerebral fluids in control of respiration as studied in unanesthetized goats. Am J Physiol 208: 242–250

    Google Scholar 

  • Pearse AGE (1969) The cytochemistry and ultrastructure of polypeptide hormone-producing cells of the APUD series and the embryologic, physiologic and pathologic implications of the concept. J Histochem Cytochem 17: 303–313

    Article  PubMed  CAS  Google Scholar 

  • Pearse AGE, Polak JM (1978) The diffuse neuroendocrine system and the APUD concept. In: Bloom SR (ed) Gut hormones. Churchill, London

    Google Scholar 

  • Peterson DF, Fedde MR (1968) Receptors sensitive to carbon dioxide in lungs of chicken. Science 162: 1449–1501

    Google Scholar 

  • Phillipson EA (1974) Vagal control of breathing pattern independent of lung inflation in conscious dogs. J Appl Physiol 37: 183–189

    PubMed  CAS  Google Scholar 

  • Phillipson EA, Bowes G (1986) Control of breathing during sleep. In: Fishman AP, Cherniak NS, Widdicombe JG, Geiger SR (eds) Handbook of physiology, section 3. The Respiratory System, vol II. Control of breathing, part 1. American Physiological Society, Bethesda

    Google Scholar 

  • Phillipson EA, Hickey RF, Bainton CR, Nadel JA (1970) Effect of vagal blockade on regulation of breathing in conscious dogs. J Appl Physiol 29: 475–479

    PubMed  CAS  Google Scholar 

  • Phillipson EA, Duffin J, Cooper JD (1981) Critical dependence of respiratory rhythmicity on metabolic CO2 load. J Appl Physiol 50: 45–54

    PubMed  CAS  Google Scholar 

  • Piiper J (ed) (1978) Respiratory function in birds, adult and embryonic. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Ponte J, Purves MJ (1978) Carbon dioxide and venous return and their interaction as stimuli to ventilation in the cat. J Physiol 274: 44

    Google Scholar 

  • Powell FL, Fedde MR, Gratz RK, Scheid P (1978) Ventilatory response to CO2 in birds. I. Measurements in the unanesthetized duck. Respir Physiol 35: 349–359

    Google Scholar 

  • Powell FL, Milsom WK, Mitchell GS (1988) Effects of intrapulmonary CO2 and airway pressure on pulmonary vagal afferent activity in the alligator. Respir Physiol 74: 285–298

    Article  PubMed  CAS  Google Scholar 

  • Rahn H (1967) Gas transport from the external environment to the cell. In: De Reuck AUS, Porter R (eds) Development of the lung. Ciba Found Symp Churchill, London

    Google Scholar 

  • Ray PJ, Fedde MR (1969) Response to alterations in respiratory Po2 and PCO2 in the chicken. Respir Physiol 6: 135–143

    Article  PubMed  CAS  Google Scholar 

  • Reeves RB (1972) An imidazole alphastat hypothesis for vertebrate acid-base regulation: tissue carbon dioxide content and body temperature in bullfrogs. Respir Physiol 14: 219–236

    Article  PubMed  CAS  Google Scholar 

  • Reeves RB (1977) The interaction of body temperature and acid-base balance in ectothermic vertebrates. Annu Rev Physiol 39: 559–586

    Article  PubMed  CAS  Google Scholar 

  • Remmers JE (1981) Control of breathing during sleep. In: Hornbein T (ed) Regulation of breathing, part II, vol 17. Lung biology in health and disease. Marcel Dekker, New York

    Google Scholar 

  • Richards SA, Avery P (1978) Central nervous mechanisms regulating thermal panting. In: Piiper J (ed) Respiratory function in birds: adult and embryonic. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Richardson PS, Widdicombe JG (1969) The role of the vagus nerves in the ventilatory responses to hypercapnia and hypoxia in anaesthetized and unanesthetized rabbits. Respir Physiol 7: 122–135

    Article  PubMed  CAS  Google Scholar 

  • Richter DW, Ballantyne D, Remmers JE (1986) How is the respiratory rhythm generated? A Model. News. Physiol Sei 1: 109–112

    Google Scholar 

  • Robin ED (1962) Relationship between temperature and plasma pH and carbon dioxide tension in the turtle. Nature 195: 249–251

    Article  PubMed  CAS  Google Scholar 

  • Rogers DC (1967) The structure of the carotid bifurcation in the lizards Tiliqua occipitalis and Trachysaurus rugosus. J Morphol 122: 115–130

    Article  PubMed  CAS  Google Scholar 

  • Rovainen CM (1974) Respiratory motoneurons in lampreys. J Comp Physiol 94: 57–68

    Article  Google Scholar 

  • Rovainen CM (1977) Neural control of ventilation in the lamprey. Fed Proc 36: 2386–2389

    PubMed  CAS  Google Scholar 

  • Russell DF (1986) Respiratory pattern generation in adult lamprey (Lampetra fluviatilis) interneurons and burst resetting. J Comp Physiol 158: 91–102

    Article  CAS  Google Scholar 

  • Scheid P, Piiper J (1986) Control of breathing in birds. In: Fishman AP, Cherniak NS, Widdicombe JG, Geiger SR (eds) Handbook of physiology, section 3. The respiratory system, vol II. Control of breathing, part 1. American Physiological Society, Bethesda

    Google Scholar 

  • Scheid P, Gratz RK, Powell FL, Fedde MR (1978) Ventilatory response to Co2 in birds. II. Contribution by intrapulmonary Co2 receptors. Respir Physiol 35: 361–372

    Article  PubMed  CAS  Google Scholar 

  • Schertel ER, Schneider DA, Adams L, Green JF (1988) Effect of pulmonary arterial PCo2 on breathing pattern. J Appl Physiol 64: 1844–1850

    PubMed  CAS  Google Scholar 

  • Sebert P (1979) Mise en evidence de Taction centrale du stimulus Co2 (H+) de la ventilation chez le canard pekin. J Physiol 75: 902–909

    Google Scholar 

  • Sellers TS (ed) (1987) Bird respiration. CRC Press Inc, Boca Raton, FL

    Google Scholar 

  • Sheldon MI, Green JF (1982) Evidence for pulmonary Co2 chemosensitivity: effects on ventilation. J Appl Physiol 52: 1192–1197

    PubMed  CAS  Google Scholar 

  • Shelton G (1970) The regulation of breathing. In: Hoar WS, Randall DJ (eds) Fish physiology, vol 4. The nervous system, circulation and respiration. Academic Press, London

    Google Scholar 

  • Shelton G, Burggren W (1976) Cardiovascular dynamics of the chelonia during apnoea and lung ventilation. J Exp Biol 100: 245–273

    Google Scholar 

  • Shelton G, Jones DR, Milsom WK (1986) Control of breathing in ectothermic vertebrates. In: Fishman AP, Cherniak NS, Widdicombe JG, Geiger SR (eds) Handbook of physiology, section 3. The respiratory system, vol II. Control of breathing, part 1. American Physiological Society, Bethesda

    Google Scholar 

  • Smith JC, Feldman JL (1987) Central respiratory pattern generation studied in an in vitro mammalian brainstem-spinal cord preparation. In: Sieck GC, Gondevia S, Cameron WC (eds) Respiratory muscles and their neuromotor control. AR Liss, New York

    Google Scholar 

  • Snapp BD, Heller HC (1981) Suppression of metabolism during hibernation in ground squirrels ( Citellus lateralis ). Physiol Zool 54: 297–307

    Google Scholar 

  • Stewart PA (1981) How to understand acid-base: A quantitative acid-base primer to biology and medicine. Elsevier Biomedical, Amsterdam

    Google Scholar 

  • St John WM (1981) Respiratory neuron responses to hypercapnia and carotid chemoreceptor stimulation. J Appl Physiol 51: 816–822

    Google Scholar 

  • St John WM, Wang SC (1977) Response of medullary respiratory neurons to hypercapnia and isocapnic hypoxia. J Appl Physiol 43: 812–821

    PubMed  CAS  Google Scholar 

  • St John WM, Bartlett D Jr, Knuth V, Hwang JC (1981) Brain stem genesis of automatic ventilatory patterns independent of spinal mechanism. J Appl Physiol 51: 204–210

    Google Scholar 

  • Sullivan CE, Kozar F, Murphy E, Phillipson EA (1978) Primary role of respiratory afferents in sustaining breathing rhythm. J Appl Physiol 45: 11–17

    PubMed  CAS  Google Scholar 

  • Suzue T (1984) Respiratory rhythm generation in the in vitro brain stem-spinal cord preparation of the neonatal rat. J Physiol 354: 135–152

    Google Scholar 

  • Sylvester JT, Whipp BJ, Wasserman K (1973) Ventilatory control during brief infusions of CO2-laden blood in the awake dog. J Appl Physiol 35: 178–186

    PubMed  CAS  Google Scholar 

  • Takeda R, Remmers JE, Baker JP, Madden KP, Farber JP (1986) Postsynaptic potentials of bulbar respiratory neurons of the turtle. Respir Physiol 64: 149–160

    Article  PubMed  CAS  Google Scholar 

  • Tallman RD Jr, Grodins FS (1982 a) Intrapulmonary CO2 receptors and ventilatory response to lung CO2 loading. J Appl Physiol 52: 1272–1277

    Google Scholar 

  • Tallman RD Jr, Grodins FS (1982 b) Intrapulmonary CO2 receptor discharge at different levels of venous PCOr J Appl Physiol 53:1386–1391

    Google Scholar 

  • Tcheng KT, Fu SK (1962) The structure and innervation of the aortic body of the yellow-breasted bunting. Sci Sin 11: 221–232

    PubMed  CAS  Google Scholar 

  • Tcheng KT, Fu SK, Chen TY (1963) Supracardial encapsulated receptors of the aorta and the pulmonary artery in birds. Sci Sin 12: 73–81

    PubMed  CAS  Google Scholar 

  • Templeton JR, Dawson WR (1963) Respiration in the lizard Crotaphytus collaris. Physiol Zool 36: 104–121

    Google Scholar 

  • Tenney SM, Boggs DF (1986) Comparative mammalian respiratory control. In: Fishman AP, Cherniak NS, Widdicombe JG, Geiger SR (eds) Handbook of physiology, section 3. The respiratory system, vol II. Control of breathing, part 1. American Physiological Society, Bethesda

    Google Scholar 

  • Terni T (1931) II simpatico cervicale degli amnioti (Ricerche di morfologia comparata). Z Anat Entwicklungsgesch 96: 289–426

    Article  Google Scholar 

  • Truchot JP (1987) Comparative aspects of extracellular acid-base balance. Springer, Berlin Heidelberg New York Tokyo

    Google Scholar 

  • Tschorn RR, Fedde MR (1974) Effects of carbon monoxide on avian intrapulmonary carbon dioxide-sensitive receptors. Respir Physiol 20: 303–311

    Article  PubMed  CAS  Google Scholar 

  • Viala D, Persegol L, Palisses R (1987) Relationship between phrenic and hindlimb extensor activities during fictive locomotion. Neurosci Lett 74: 49–52

    Article  PubMed  CAS  Google Scholar 

  • Von Euler C (1986) Brain stem mechanisms for generation and control of breathing pattern. Section 3, The respiratory system, vol II. Control of Breathing, part 1. American Physiological Society, Bethesda

    Google Scholar 

  • Von Euler C, Lagercrantz H (eds) (1986) Neurobiology of the control of Breathing. Raven Press, New York

    Google Scholar 

  • Von Euler C, Martila I, Remmers JE, Trippenbach T (1976) Effects of lesions in the parabranchial nucleus on the mechanisms for central and reflex termination of inspiration in the cat. Acta Physiol Scand 96: 324–337

    Article  Google Scholar 

  • Wasserman K, Whipp BJ, Casaburi R (1986) Respiratory control during exercise. In: Fishman AP, Cherniak NS, Widdicombe JG, Geiger SR (eds) Handbook of physiology, section 3. The respiratory system, vol II. Control of breathing, part 1. American Physiological Society, Bethesda

    Google Scholar 

  • Webb CL, Milsom WK (1990) Carotid body contribution to hypoxic ventilatory responses in euthermic and hibernating ground squirrels. In: Eyzaguirre C, Fidone S (eds) Arterial Chemoreception. Springer, New York

    Google Scholar 

  • West NH, Langille BL, Jones DR (1981) Cardiovascular system. In: King AS, McLelland J (eds) Form and function in birds, vol 2. Academic Press, London

    Google Scholar 

  • White FN (1976) Circulation. In: Gans C, Davidson WR (eds) Biology of the reptilia, vol 5. Academic Press, New York

    Google Scholar 

  • Wiemer W, Kiwull P (1972) The role of the vagus nerves in the respiratory response to CO2 under hyperoxic conditions. Pfügers Arch 336: 147–170

    Article  CAS  Google Scholar 

  • Woldring S (1965) Interrelationship between lung volume, arterial CO2 tension, and respiratory activity. J Appl Physiol 20: 647–652

    PubMed  CAS  Google Scholar 

  • Wood SC (1984) Cardiovascular shunts and oxygen transport in lower vertebrates. Am J Physiol 247: R3–R14

    PubMed  CAS  Google Scholar 

  • Wood SC (ed) (1989) Comparative pulmonary physiology: current concepts, vol 39. Lung biology in health and disease. Marcel Dekker, New York

    Google Scholar 

  • Yamamoto WS (1981) Computer simulation of experiments in response to intravenous and inhaled CO2. J Appl Physiol 50: 835–843

    PubMed  CAS  Google Scholar 

  • Yamamoto WS, Edwards MW Jr (1960) Homeostasis of carbon dioxide during intra-venous in-fusion of carbon dioxide. J Appl Physiol 15: 807–818

    PubMed  CAS  Google Scholar 

  • Younes MK, Remmers JE, Baker J (1978) Characteristics of inspiratory inhibition by phasic volume feedback in cats. J Appl Physiol 45: 80–86

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Milsom, W.K. (1990). Control and Co-Ordination of Gas Exchange in Air Breathers. In: Boutilier, R.G. (eds) Vertebrate Gas Exchange. Advances in Comparative and Environmental Physiology, vol 6. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-75380-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-75380-0_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-75382-4

  • Online ISBN: 978-3-642-75380-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics