Kinetic Physics of the Solar Wind Plasma

  • Eckart Marsch
Part of the Physics and Chemistry in Space book series (SPACE, volume 21)

Abstract

The interplanetary medium has been continuously explored for more than two decades and substantial progress has been made, both with regard to in situ measurements and a theoretical understanding of the solar wind. Concurrently, measurement techniques for remote sensing of its source regions in the solar corona by means of photons covering the full electromagnetic spectrum from γ-rays to radar have also become mature. The results obtained have greatly improved and corroborated our knowledge about the solar wind from the very coronal base to several solar radii and further out into interplanetary space (see the reviews [8.15, 66–68, 76, 109, 119, 120, 126, 131, 134, 215, 245] and [8.22, 23, 26, 286, 288]). However, even after completion of the Helios mission there remains an important but poorly explored region in the inner heliosphere below 0.3 AU to be investigated and, of course, the wide space out of the ecliptic plane and above the solar poles. Whereas a solar probe, the feasibility of which has already been demonstrated [8.239], may possibly be realized in the far future, the out-of-ecliptic mission [8.199] is soon to become reality and will certainly help to comprehend better the three-dimensional structure of the heliosphere.

Keywords

Entropy Anisotropy Helium Radar Flare 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 8.1
    Abraham-Shrauner, B., W.C. Feldman, Whistler heat flux instability in the solar wind with bi-Lorentzian velocity distributions, J. Geophys. Res., 82, 1889–1892, 1977.ADSGoogle Scholar
  2. 8.2
    Abraham-Shrauner, B., W.C. Feldman, Nonlinear Alfvén waves in high-speed solar wind streams. J. Geophys. Res., 82, 618–624, 1977.ADSGoogle Scholar
  3. 8.3
    Abraham-Shrauner, B., J.R. Asbridge, S J. Bame, W.C. Feldman, Proton-driven electromagnetic instabilities in high-speed solar wind streams, J. Geophys. Res., 84, 553–559, 1979.ADSGoogle Scholar
  4. 8.4
    Asbridge, J.R., S J. Bame, W.C. Feldman, M.D. Montgomery, Helium and hydrogen velocity differences in the solar wind, J. Geophys. Res., 81, 2719–2727, 1976.ADSGoogle Scholar
  5. 8.5
    Axford, W.L, The solar wind, Solar Phys., 100, 575–586, 1985.Google Scholar
  6. 8.6
    Bame, S J., J.R. Asbridge, W.C. Feldman, P.D. Keamy, The quiet corona: temperature and temperature gradient. Solar Phys., 35, 137–142, 1974.ADSGoogle Scholar
  7. 8.7
    Bame, S.J., J.R. Asbridge, W.C. Feldman, M.D. Montgomery, P.D. Keamey, Solar wind heavy ion abundances. Solar Phys., 43, 463–473, 1975.ADSGoogle Scholar
  8. 8.8
    Bame, S.J., J.R. Asbridge, W.C. Feldman, S.P. Gary, M.D. Montgomery, Evidence for local ion heating in solar wind high speed streams, Geophys. Res. Lett., 2, 373–375, 1975.ADSGoogle Scholar
  9. 8.9
    Barakat, A.R., R.W. Schunk, Transport equations for multicomponent anisotropic space plasmas: A review. Plasma Physics, 24, 389–418, 1982.MathSciNetADSGoogle Scholar
  10. 8.10
    Barnes, A., Collisionless damping of hydromagnetic waves, Phys. Fluids, 9, e.g. 1483, 1966.ADSGoogle Scholar
  11. 8.11
    Barnes, A. Stochastic electron heating and hydromagnetic wave damping, Phys. Ruids, 9, e.g. 2427, 1967.ADSGoogle Scholar
  12. Barnes, A., Quasi linear theory of hydromagnetic waves in collisionless plasma, Phys. Fluids, 11, 2644–2654, 1968.ADSGoogle Scholar
  13. 8.13
    Barnes, A., Collisionless heating of the solar wind plasma, 2. Application of the theory of plasma heating by hydromagnetic waves, Astrophys. J., 155, 311–321, 1969.ADSGoogle Scholar
  14. 8.14
    Barnes, A., Acceleration of the solar wind by the interplanetary magnetic field, Astrophys. J., 188, 645–648, 1974.ADSGoogle Scholar
  15. 8.15
    Barnes, A., Hydromagnetic waves and turbulence and in the solar wind, in Solar System Plasma Physics, Vol I, ed. by E.N. Parker, C.F. Kennel, L.J. Lanzerotti, North-Holland, Amsterdam, 249–319, 1979.Google Scholar
  16. 8.16
    Bavassano, B., M. Dobrowolny, F. Mariani, N.F. Ness, Radial evolution of power spectra of interplanetary Alfvénic turbulence, J. Geophys. Res., 87, 3617–3622, 1982.ADSGoogle Scholar
  17. 8.17
    Behannon, K.W., Observations of the interplanetary magnetic field between 0.41 and 1 AU by the Mariner 10 spacecraft, Doc. 692–76-2, Goddard Space Flight Center, Greenbelt, Md., 1976.Google Scholar
  18. 8.18
    Beinroth, H.J., F.M. Neubauer, Properties of whistler-mode waves between 0.3 and 1 AU from Helios observations, J. Geophys. Res., 86, 7755–7760, 1981.ADSGoogle Scholar
  19. 8.19
    Belcher, J.W., Alfvénic wave pressure and the solar wind, Astrophys. J., 168, 509–524, 1971.ADSGoogle Scholar
  20. 8.20
    Belcher, J.W., L. Davis, Large-amplitude Alfvén waves in the interplanetary medium, J. Geophys. Res., 76, 3534–3563, 1971.ADSGoogle Scholar
  21. 8.21
    Belcher, J.W., H.S. Bridge, A.J. Lazarus, J.D. Sullivan, Preliminary results from the Voyager solar wind experiment, in Solar Wind Four, ed. by H. Rosenbauer, Report MPAE-W-100–81- 31, Max-Planck-Institut für Aeronomie, Katlenburg-Lindau, F.R.Germany, 131–142, 1981.Google Scholar
  22. 8.22
    Bird, M.K., Coronal investigations with occulated spacecraft signals. Space Sci. Rev., 33, 99–126, 1982.ADSGoogle Scholar
  23. 8.23
    Bird, M.K., P. Edenhofer, Remote sensing of the solar corona, in Physics of the Inner Heliosphere, Vol 1, ed. by R. Schwenn and E. Marsch, Springer-Verlag, Berlin, Heidelberg, New York, 13–97, 1990.Google Scholar
  24. 8.24
    Bochsler, P., J. Geiss, R. Joos, Kinetic temperatures of heavy ions in the solar wind, J. Geophys. Res., 90, 10779–10789, 1985.ADSGoogle Scholar
  25. 8.25
    Bochsler, P., J. Geiss, S. Kunz, Abundances of carbon, oxygen, neon in the solar wind during the period from August 1978 to June 1982. Solar Phys., 103, 177–201, 1986.ADSGoogle Scholar
  26. 8.26
    Bohlm, J.D., E.O. Hulbert, An observational definition of coronal holes, in Coronal Holes and High Speed Streams, ed. by J.B. Zirker, Colorado Associated University Press, Boulder, Colorado, USA, 27–70, 1977.Google Scholar
  27. 8.27
    Borrini, G., J.T. Gosling, S.J. Bame, W.C. Feldman, J.M. Wilcox, Solar wind helium and hydrogen structure near the heliospheric current sheet: a signal of coronal streamers at 1 AU, J. Geophys. Res., 86, 4565–4573, 1981.ADSGoogle Scholar
  28. 8.28
    Braginskii, S.L, Transport processes in plasma, in Review of Plasma Physics, Vol 1, ed. by M.A. Leontovich, Consultants Bureau, New York, 205–311, 1966.Google Scholar
  29. 8.29
    Brandt, J.C., J.P. Cassinelli, Interplanetary gas, Icarus, 5, 47–63, 1966.Google Scholar
  30. 8.30
    Brückner, G£., J.D.F. Bartoe, Observations of high energy jets in the corona above the quiet sun, the heating of the corona and the acceleration of the solar wind, Astrophys. J., 272, 329–348, 1983.ADSGoogle Scholar
  31. 8.31
    Bürgi, A., J. Geiss, Helium and minor ions in the corona and solar wind: Dynamics and charge states. Solar Phys., 103, 347–383, 1986.ADSGoogle Scholar
  32. Burlaga, L.F., Hydromagnetic waves and discontinuities in the solar wind, Space Sci. Rev., 12, 600–657, 1971.Google Scholar
  33. 8.33
    Burlaga, L.F., K.W. Ogilvie, Heating of the solar wind, Astrophys. J., 159, 659–670, 1970.ADSGoogle Scholar
  34. 8.34
    Burlaga, L.F., J.F. Lemaire, J.M. Turner, Interplanetary current sheets at 1 AU, J. Geophys. Res., 82, 3191–3200, 1977.ADSGoogle Scholar
  35. 8.35
    Burlaga, L.F., K.W. Behannon, S.F. Hansen, G.W. Pneuman, W.C. Feldman, Sources of magnetic fields in recurrent interplanetary streams, J. Geophys. Res., 83, 4177–4185, 1978.ADSGoogle Scholar
  36. 8.36
    Burlaga, L., E. Sittler, F. Mariani, R. Schwenn, Magnetic loop behind an interplanetary shock: Voyager, Helios, IMP8 observations, J. Geophys. Res., 86, 6673–6684, 1981.ADSGoogle Scholar
  37. 8.37
    Burlaga, L.F., L. Klein, A magnetic cloud and a coronal mass ejection, Geophys. Res. Lett., 9, 1317–1320, 1982.ADSGoogle Scholar
  38. 8.38
    Burlaga, L., Magnetic clouds, in Physics of the Inner Heliosphere, Vol 1, ed. by R. Schwenn and E. Marsch, Springer-Verlag, Berlin, Heidelberg, New York, 1990.Google Scholar
  39. 8.39
    Chew, G.F., M.L. Goldberger, F.E. Low, The Boltzmann equation and the one-fluid hydro- magnetic equations in the absence of particle collisions. Proc. Roy. Soc. London, 236A, e.g. 112, 1956.MathSciNetADSGoogle Scholar
  40. 8.40
    Coroniti, F.V., C.F. Kennel, F.L. Scarf, EJ. Smith, Whistler mode turbulence in the disturbed solar wind, J. Geophys. Res., 87, 6029–6044, 1982.ADSGoogle Scholar
  41. 8.41
    Cuperman, S., Electromagnetic kinetic instabilities in multicomponent space plasmas: Theoretical predictions and computer simulation experiments. Rev. Geophys. Space Sci., 19, 307–343, 1981.ADSGoogle Scholar
  42. 8.42
    Cuperman, S., Solar wind models, in Solar Wind Four, ed. by H. Rosenbauer, Report MPAE- W-100–81-31, Max-Planck-Institut für Aeronomie, Katlenburg-Lindau, F.R. Germany, 13–27, 1981.Google Scholar
  43. 8.43
    Cuperman, S., R.W. Landau, Ion cyclotron resonant instability of RH waves propagating at an angle to the interplanetary magnetic field, Astrophys. Space Sci., 5, 333–341, 1969.ADSGoogle Scholar
  44. 8.44
    Cuperman, S., I. Weiss, M. Dryer, Higher order fluid equations for multicomponent nonequilibrium stellar (plasma) atmospheres and star clusters, Astrophys. J., 239, 345–359, 1980.MathSciNetADSGoogle Scholar
  45. 8.45
    Cuperman, S., I. Weiss, M. Dryer, Theoretical non-Maxwellian particle velocity distribution functions for spherically-symmetric solar wind-like plasma systems and consequences, Astrophys. J., 273, 363–373, 1983.ADSGoogle Scholar
  46. 8.46
    Cuperman, S., L. Ofman, M. Dryer, On the dispersion of ion-cyclotron waves in the H+-He++ solar wind-like magnetized plasma, J. Geophys. Res., 93, 2533–2538, 1988.ADSGoogle Scholar
  47. 8.47
    Denskat, K.U., F.M. Neubauer, R. Schwenn, Properties of “Alfvénic” fluctuations near the sun: Helios 1 and Helios 2, in Solar Wind Four, ed. by H. Rosenbauer, Report MPAE-W- 100–81-31, Max-Planck-Institut für Aeronomie, Katlenburg-Lindau, F.R.Germany, 392–397, 1981.Google Scholar
  48. 8.48
    Denskat, K.U., F.M. Neubauer, Statistical properties of low irequency magnetic field fluctuations in the solar wind from 0.29 to 1 AU during solar minimum conditions: Helios 1 and Helios 2, J. Geophys. Res., 87, 2215–2223, 1982.ADSGoogle Scholar
  49. 8.49
    Dere, K.P., HTRS observations of the fine structure and dynamics of the solar chromosphere and transition zone, in Solar Wind Five, ed. by M. Neugebauer, NASA Conference Publication 2280, Washington, USA, 34–43, 1983.Google Scholar
  50. 8.50
    Dobrowolny, M., G. Moreno, Plasma kinetics in the solar wind. Space Sci. Rev., 20,577–620, 1977.ADSGoogle Scholar
  51. 8.51
    Dobrowolny, M., M. Tessarotto, Electron kinetic instabilities in the solar wind, Astrophys. Space Sci., 57, 153–162, 1978.ADSGoogle Scholar
  52. 8.52
    Dobrowohiy, M., G. Torricelli-Ciamponi, Astron. Astrophys., 142, 404–410, 1985.ADSGoogle Scholar
  53. 8.53
    Dryer, M., Coronal transient phenomena. Space Sci. Rev., 33, 233–275, 1983.ADSGoogle Scholar
  54. 8.54
    Dulk, G.A., K.V. Sheridan, S.F. Smerd, G.L. Withbroe, Radio and EUV observations of a coronal hole. Solar Phys., 52, 349–367, 1977.ADSGoogle Scholar
  55. 8.55
    Dum, C.T., Electrostatic waves and anomalous transport in the solar wind, in Solar Wind Five, ed. by M. Neugebauer, NASA Conference Publication 2280, Washington, USA, 369–376, 1983.Google Scholar
  56. 8.56
    Dum, C.T., E. Marsch, W. Pilipp, Analysis of electromagnetic instabilities using measured solar wind distribution functions, paper presented at the European Geophysical Society Meeting, Vienna, 1979.Google Scholar
  57. 8.57
    Dum, C.T., E. Marsch, W.G. Pilipp, Determination of wave growth from measured distribution functions and transport theory, J. Plasma Phys., 23, 91–113, 1980.ADSGoogle Scholar
  58. 8.58
    Dum, C.T., E. Marsch, W.G. Pilipp, D.A. Gumett, Ion sound turbulence in the solar wind, in Solar Wind Four, ed. by H. Rosenbauer, Report MPAE-W-100–81-31, Max-Planck-Institut für Aeronomie, Katlenburg-Lindau, F.R.Germany, 299–304, 1981.Google Scholar
  59. 8.59
    Dum, C.T., E. Marsch, W.G. Pilipp, D.A. Gumett, Ion sound wave instability in the solar wind, unpublished manuscript, 1988.Google Scholar
  60. 8.60
    Dusenbery, P.B., J.V. Hollweg, Ion cyclotron heating and acceleration of solar wind minor ions, J. Geophys. Res., 86, 153–164, 1981.ADSGoogle Scholar
  61. 8.61
    Esser, R., E. Leer, S. Habbal, G.L. Withbroe, A two-fluid solar wind model with Alfvén waves: Parameter study and application to observations, J. Geophys. Res., 91, 2950–2960, 1986.ADSGoogle Scholar
  62. 8.62
    Esser, R., T.E. Holzer, E. Leer, Drawing inferences about solar wind acceleration from coronal minor ion observations, J. Geophys. Res., 92, 13377–13389, 1987.ADSGoogle Scholar
  63. 8.63
    Eviatar, A., M. Schulz, Ion temperature anisotropics and structure of the solar wind. Planet. Space Sci., 18, 321–332, 1970.ADSGoogle Scholar
  64. Eyni, M., A.S. Kaufman, The adiabatic cooling of the protons in the solar wind: The case where the interplanetary magnetic field is of spiral form, Astrophys. Space Sci., 28, 177–183, 1974.ADSGoogle Scholar
  65. 8.65
    Fahr, HJ., B. Shizgal, Modem exospheric theories and their observational relevance. Rev. Geophys., Space Phys., 21, 75–124, 1983.ADSGoogle Scholar
  66. 8.66
    Feldman, W.C., Solar wind plasma processes and transport. Rev. Geophys. Space Phys., 7, 1743–1751, 1979.ADSGoogle Scholar
  67. 8.67
    Feldman, W.C., Kinetic processes in the solar wind, in Solar System Plasma Physics, Vol I, ed. by E.N. Parker, C.F. Kennel, L.J. Unzerotti, North-Holland, Amsterdam, 331–344, 1979.Google Scholar
  68. 8.68
    Feldman, W.C., J.R. Asbridge, S.J. Bame, M.D. Montgomery, Double ion streams in the solar wind, J. Geophys. Res., 78, 2017–2027, 1973.ADSGoogle Scholar
  69. 8.69
    Feldman, W.C., J.R. Asbridge, S.J. Bame, M.D. Montgomery, On the origin of solar wind proton thermal anisotropy, J. Geophys. Res., 78, 6451–6468, 1973.ADSGoogle Scholar
  70. 8.70
    Feldman, W.C., J.R. Asbridge, S.J. Bame, M.D. Montgomery, Interpenetrating solar wind streams. Rev. Geophys. Space Phys., 4, 715–723, 1974.ADSGoogle Scholar
  71. 8.71
    Feldman, W.C., J.R. Asbridge, S.J. Bame, The solar wind He2+ to H+ temperature ratio, J. Geophys. Res., 79, 2319–2323, 1974.ADSGoogle Scholar
  72. 8.72
    Feldman, W.C., J.R. Asbridge, S J. Bame, M.D. Montgomery, S.P. Gary, Solar wind electrons, J. Geophys. Res., 80,00 4181–4196, 1975.ADSGoogle Scholar
  73. 8.73
    Feldman, W.C., J.R. Asbridge, S.J. Bame, J.T. Gosling, High-speed solar wind flow parameters at 1 AU, J. Geophys. Res., 81, 5054–5060, 1976.ADSGoogle Scholar
  74. 8.74
    Feldman, W.C., J.R. Asbridge, S.J. Bame, S.P. Gary, M.D. Montgomery, Electron parameter correlations in high-speed streams and heat flux instabilities, J. Geophys. Res., 81, 2377–2382, 1976.ADSGoogle Scholar
  75. 8.75
    Feldman, W.C., J.R. Asbridge, S.J. Bame, S.P. Gary, M.D. Montgomery, S.M. Zink, Evidence for the regulation of solar wind heat flux at 1 AU, J. Geophys. Res., 81, 5207–5211, 1976.ADSGoogle Scholar
  76. 8.76
    Feldman, W.C., J.R. Asbridge, S.J. Bame, J.T. Gosling, Plasma and magnetic fields from the sun, in The Solar Output and its Variations, ed. by O.R. White, Colorado Associated University Press, Boulder, Colorado, 351–382, 1977.Google Scholar
  77. 8.77
    Feldman, W.C., J.R. Asbridge, S.J. Bame, J.T. Gosling, D.S. Lemons, Characteristics electron variations across simple high-speed solar wind streams, J. Geophys. Res., 83, 5285–5295, 1978.ADSGoogle Scholar
  78. 8.78
    Feldman, W.C., J.R. Asbridge, S.J. Bame, J.T. Gosling, D.S. Lemons, Electron heating within interaction zones of simple high-speed solar wind streams, J. Geophys. Res., 83, 5297–5303, 1978.ADSGoogle Scholar
  79. 8.79
    Feldman, W.C., J.R. Asbridge, SJ. Bame, J.T. Gosling, D.S. Lemons, The core electron temperature profile between 0.5 and 1 AU in the steady-state high speed solar wind, J. Geophys. Res., 84, 4463–4467, 1979.ADSGoogle Scholar
  80. 8.80
    Feldman, W.C., J.R. Asbridge, S J. Bame, E.E. Fenimore, J.T. Gosling, The origins of solar wind interstream flows: near-equatorial coronal streamers, J. Geophys. Res., 86, 5408–5416, 1981.ADSGoogle Scholar
  81. 8.81
    Feldman, W.C., J.R. Asbridge, SJ. Bame, J.T. Gosling, Quantitative tests of a steady state theory of solar wind electrons, J. Geophys. Res., 87, 7355–7362, 1982.ADSGoogle Scholar
  82. Feynman, J., On solar wind helium and heavy ion temperatures. Solar Phys., 43, 249–252, 1975. ADSGoogle Scholar
  83. 8.83
    Flå, T., S.R. Habbal, T.E. Holzer, E. Leer, Fast-mode magnetohydrodynamic waves in coronal holes and the solar wind, Astrophys. J., 280, 382–390, 1984.ADSGoogle Scholar
  84. 8.84
    Forslund, D.W., Instabilities associated with heat conduction in the solar wind and their consequences, J. Geophys. Res., 75, 17–28, 1970.ADSGoogle Scholar
  85. 8.85
    Freeman, J.W., R.W. Lopez, The cold solar wind, J. Geophys. Res., 90 9885–9887, 1985.ADSGoogle Scholar
  86. 8.86
    Freeman, J.W., Estimates of solar wind heating inside 0.3 AU, Geophys. Res. Lett., 15, 88–91, 1988.ADSGoogle Scholar
  87. 8.87
    Fuselier, S.A., D.A. Gumett, R.J. Fitzenreiter, The downshift of electron plasma oscillations in the electron foreshock region, J. Geophs. Res., 90, 3935–3946, 1985.ADSGoogle Scholar
  88. 8.88
    Gary, S.P., Ion-acoustic-like instabilities in the solar wind, J. Geophys. Res., 83, 2504–2510, 1978.ADSGoogle Scholar
  89. 8.89
    Gary, S.P., Electrostatic heat flux instabilities, J. Plasma Phys., 20, 47–60, 1978.ADSGoogle Scholar
  90. 8.90
    Gary, S.P., Wave-particle transport from electrostatic instabilities, Phys. Fluids, 23, 1193- 1204, 1980.ADSMATHGoogle Scholar
  91. 8.91
    Gary, S.P., Electrostatic instabilities in plasmas with two electron components, J. Geophys. Res., 90, 8213–8219, 1985.ADSGoogle Scholar
  92. 8.92
    Gary, S.P., The electron/electron acoustic instability, Phys. Fluids, 30, 2745–2749, 1987.ADSGoogle Scholar
  93. 8.93
    Gary, S.P., W.C. Feldman, D.W. Forslund, M.D. Montgomery, Electron heat flux instabilities in the solar wind, Geophys. Res. Lett., 2, 79–82, 1975.ADSGoogle Scholar
  94. 8.94
    Gary, SP., W.C. Feldman, D.W. Forslund, M.D. Montgomery, Heat flux instabilities in the solar wind, J. Geophys. Res., 80, 4197–4203, 1975.ADSGoogle Scholar
  95. 8.95
    Gary, S.P., W.C. Feldman, A second order theory for k\\B 0 electromagnetic instabilities, Phys. Fluids, 21, 72–80, 1978.MathSciNetADSGoogle Scholar
  96. 8.96
    Gary, S.P., J.T. Gosling, D.W. Forslund, The electromagnetic beam instability upstream of the earth’s bow shock, J. Geophys. Res., 86, 6691–6696, 1981.ADSGoogle Scholar
  97. 8.97
    Gary, S.P., C.D. Madland, B.T. Tsurutani, Electromagnetic ion beam instabilities: H, Phys. Fluids, 28, 3691–3695, 1985.ADSMATHGoogle Scholar
  98. 8.98
    Gazis, P.R., A J. Lazarus, Voyager observations of solar wind proton temperature: 1–10 AU, Geophys. Res. Lett., 9, 431–434, 1982.ADSGoogle Scholar
  99. 8.99
    Geiss, J., Processes affecting abundances in the solar wind. Space Science Reviews, 33, 201–217, 1982.ADSGoogle Scholar
  100. 8.100
    Geiss, J., Diagnostics of corona by in-situ composition measurements at 1 AU, Proceedings of an ESA workshop on “Future missions in solar, heliospheric and space plasma physics”, ESA SP-235, 37–50, 1985.Google Scholar
  101. 8.101
    Geiss, J., P. Bochsler, Ion composition in the solar wind in relation to solar abundances, in Rapports Isotopiques dans le Systeme Solaire, Cepadues-Editions, Paris, France, 1–16, 1985.Google Scholar
  102. 8.102
    Geiss, J., P. Bochsler, Solar wind composition and what we expect to learn from out-of- ecliptic measurements, in The Sun and the Heliosphere in Three Dimensions, ed. by R.G. Marsden, D. Reidel Publishing Company, Dordrecht, 173–186, 1986.Google Scholar
  103. 8.103
    Gendrin, R., Wave particle interactions as an energy transfer mechanism between different particle species. Space Sci. Rev., 34, 271–287, 1983.ADSGoogle Scholar
  104. 8.104
    Goodrich, C.C., A.J. Lazarus, Suprathermal protons in the interplanetary solar wind, J. Geophys. Res., 81, 2750–2754, 1976.ADSGoogle Scholar
  105. 8.105
    Gosling, J.T., E. Hildner, S.R. Asbridge, S J. Bame, W.C. Feldman, Noncompressive density enhancements in the solar wind, J. Geophys. Res., 82, 5005–5010, 1977.ADSGoogle Scholar
  106. 8.106
    Gosling, J.T., J.R. Asbridge, SJ. Bame, W.C. Feldman, Solar wind stream interfaces, J. Geophys. Res., 83, 1401–1412, 1978.ADSGoogle Scholar
  107. 8.107
    Gosling, J.T., G. Borrini, J.R. Asbridge, S.J. Bame, W.C. Feldman, R.T. Hansen, Coronal streamers in the solar wind at 1 AU, J. Geophys. Res., 86, 5438–5448, 1981.ADSGoogle Scholar
  108. 8.108
    Griffel, D.H., L. Davis, The anisotropy of the solar wind. Planet. Space Sci., 17, 1009–1020, 1969.ADSGoogle Scholar
  109. 8.109
    Gumett, D.A., Plasma waves in the solar wind: A review of observations, in Solar Wind Four, ed. by H. Rosenbauer, Report MPAE-W-100–81-31, Max-Planck-Institut für Aeronomie, Katlenburg-Lindau, F.R.Germany, 286–298, 1981.Google Scholar
  110. Gumett, D.A., Waves and Instabilities, in Physics of the Inner Heliosphere (this volume).Google Scholar
  111. 8.111
    Gumett, D.A., L.A. Frank, Ion-acoustic waves in the solar wind, J. Geophys. Res., 83, 58–74, 1978.ADSGoogle Scholar
  112. 8.112
    Gumett, D.A., E. Marsch, W.G. Pilipp, R. Schwenn, H. Rosenbauer, Ion-acoustic waves and related plasma observations in the solar wind, J. Geophys. Res., 84, 2029–2038, 1979.ADSGoogle Scholar
  113. 8.113
    Habbal, S.R., E. Leer, Electron heating by Fast-mode magnetohydrodynamic waves in the solar wind emanating from coronal holes, Astrophys. J., 253, 318–322, 1982.ADSGoogle Scholar
  114. 8.114
    Hernández, R., E. Marsch, Collisional time scales for temperature and velocity exchange between drifting Maxwellians, J. Geophys. Res., 90, 11062–11066, 1985.ADSGoogle Scholar
  115. 8.115
    Hernández, R., S. Livi, E. Marsch, On the He2+ to H+ temperature ratio in slow solar wind, J. Geophys. Res., 92, 7723–7727, 1987.ADSGoogle Scholar
  116. 8.116
    Hinton, F.L., Collisional transport in plasma, in Basic Plasma Physics, ed. by A.A. Galeev and R.N. Sudan, North-Holland Publishing Company, Amsterdam, 147–197, 1983.Google Scholar
  117. 8.117
    Hollweg, J.V., Collisionless solar wind. 1. Constant electron temperature, J. Geophys. Res., 75, 2403–2418, 1970.ADSGoogle Scholar
  118. 8.118
    Hollweg, J.V., On electron heat conduction in the solar wind, J. Geophys. Res., 79, 3845–3850, 1974.ADSGoogle Scholar
  119. 8.119
    Hollweg, J.V., Waves and instabilities in the solar wind. Rev. Geophys. Space Phys., 13, 263–289, 1975.ADSGoogle Scholar
  120. 8.120
    Hollweg, J.V., Some physical processes in the solar wind. Rev. Geophys. Space Phys., 16, 689–720, 1978.ADSGoogle Scholar
  121. 8.121
    Hollweg, J.V., Helium and heavy ions, in Solar Wind Four, ed. by H. Rosenbauer, Report MPAE-W-100–81-31, Max-Planck-Institut für Aeronmie, Katlenburg-Lindau, F.R.Germany, 414–424, 1981.Google Scholar
  122. 8.122
    Hollweg J.V., Energy and momentum transport by waves in the solar atmosphere, in Proceedings of the 1985 Trieste Summer College on Plasma Physics, ed. by B. Buti, Advances in Space Plasma Physics, World Scientific, Singapore, 77, 1985.Google Scholar
  123. 8.123
    Hollweg, J.V., Transition region, corona, solar wind in coronal holes, J. Geophys. Res., 91, 4111–4125, 1986.ADSGoogle Scholar
  124. 8.124
    Holl weg, J.V., W. Johnsen, Transition region, corona, solar wind in coronal holes: some two-fluid models, J. Geophys. Res., 93, 9547–9554, 1988.ADSGoogle Scholar
  125. 8.125
    Holzer, T.E., Effects of rapidly diverging flow, heat addition and momentum addition in the solar wind and stellar winds, J. Geophys. Res., 82, 23–35, 1977.ADSGoogle Scholar
  126. 8.126
    Holzer, T.E., The solar wind and related astrophysical phenomena, in Solar System Plasma Physics, Vol I, ed. by E.N. Parker, C.F. Kennel, L.J. Lanzerotti, 101–176, North-Holland, Amsterdam, 1979.Google Scholar
  127. 8.127
    Holzer, T.E., E. Leer, Conductive solar wind models in rapidly diverging flow geometries, J. Geophys. Res., 85, 4665–4679, 1980.ADSGoogle Scholar
  128. 8.128
    Holzer, T.E., T. Flå, E. Leer, Alfvén waves in stellar winds, Astrophys. J., 275, 808–835, 1983.ADSGoogle Scholar
  129. 8.129
    Holzer, E.T., E. Leer, Xue-Pu Zhao, Viscosity in the solar wind, J. Geophys. Res., 91, 4126- 4132, 1986.ADSGoogle Scholar
  130. 8.130
    Hundhausen, A.J., Composition and dynamics of the solar wind plasma. Rev. Geophys. Space Phys., 8, 729–811, 1970.ADSGoogle Scholar
  131. 8.131
    Hundhausen, A.J., Coronal Expansion and Solar Wind, Springer-Verlag, New York, Berlin, Heidelberg, 1972.Google Scholar
  132. 8.132
    Hundhausen, AJ., Solar wind stream interactions and interplanetary heat conduction, J. Geophys. Res., 78, 7996–8010, 1973.ADSGoogle Scholar
  133. 8.133
    Hundhausen, A.J., An interplanetary view of coronal holes, in Coronal Holes and High Speed Streams, ed. by J.B. Zirker, Colorado Associated University Press, Boulder, Colorado, USA, 223–329, 1977.Google Scholar
  134. 8.134
    Hundhausen, A.J., Solar activity and the solar wind. Rev. Geophys. Space Phys., 17, 2034–2048, 1979.ADSGoogle Scholar
  135. 8.135
    Hundhausen, A.J., S.J. Bame, N.F. Ness, Solar wind thermal anisotropics: Vela 3 and IMP 3, J. Geophys. Res., 72, 5265–5274, 1967.ADSGoogle Scholar
  136. 8.136
    Hundhausen, A.J., M.D. Montgomery, Heat conduction and nonsteady phenomena in the solar wind, J. Geophys. Res., 76, 2236–2244, 1971.ADSGoogle Scholar
  137. 8.137
    Ipavich, F.M., A.B. Calvin, G. Gloeckler, D. Hovestadt, S.J. Bame, B. Klecker, M. Scholer, L.A. Fisk, C.Y. Fan, Solar wind Fe and CNO measurements in high-speed flows, J. Geophys. Res., 91, 4133–4141, 1986.ADSGoogle Scholar
  138. 8.138
    Isenberg, P.A., Acceleration of heavy ions in the solar wind, in Solar Wind Five, ed. by M. Neugebauer, NASA Conference Publication 2280, Washington, USA, 655–661, 1983.Google Scholar
  139. 8.139
    Isenberg, P.A., The ion-cyclotron dispersion relation in a proton-alpha solar wind, J. Geophys. Res., 89, 2133–2141, 1984.ADSGoogle Scholar
  140. 8.140
    Isenberg, P.A., J.V. Hollweg, Finite amplitude Alfvén waves in a multi-ion plasma: Propagation, acceleration, heating, J. Geophys. Res., 87, 5023–5029, 1982.ADSGoogle Scholar
  141. 8.141
    Isenberg, P.A., J.V. Hollweg, On the preferential acceleration and heating of solar wind heavy ions, J. Geophys. Res., 88, 3923–3935, 1983.ADSGoogle Scholar
  142. 8.142
    Jacques, S.A., Momentum and energy transport by waves in the solar atmosphere and solar wind, Astrophys. J., 215, 942–951, 1977.ADSGoogle Scholar
  143. 8.143
    Jacques, S.A., Solar wind models with Alfvén waves, Astrophys. J., 226, 632–649, 1978.ADSGoogle Scholar
  144. Jockers, K., Solar wind models based on exospheric theory, Astron. Astrophys., 6, 219–239, 1970.ADSGoogle Scholar
  145. 8.145
    Kayser, S.E., A. Barnes, J.D. Mihalov, The far reaches of the solar wind: Pioneer 16 má Pioneer 11 plasma results, Astrophys. J., 285, 339–346, 1984.ADSGoogle Scholar
  146. 8.146
    Kennel, C.F., F.L. Scarf, F.V. Coroniti, R.W. Fredericks, D.A. Gumett, E.J. Smith, Correlated whistler and electron plasma oscillation bursts detected on ISEE 3, Geophys. Res. Lett.,7, 129–132, 1980.ADSGoogle Scholar
  147. 8.147
    Kennel, C.F., F.L. Scarf, F.V. Coroniti, EJ. Smith. D.A. Gumett, Nonlocal plasma turbulence associated with interplanetary shocks, J. Geophys. Res., 87, 17–34, 1982.ADSGoogle Scholar
  148. 8.148
    Klein, L.W., L.F. Burlaga, Interplanetary magnetic clouds at 1 AU, J. Geophys. Res., 87, 613–624, 1982.ADSGoogle Scholar
  149. 8.149
    Klein, L.W., K.W. Ogilvie, L.F. Burlaga, Coulomb collisions in the solar wind, J. Geophys. Res., 90, 7389–7395, 1985.ADSGoogle Scholar
  150. 8.150
    Kopp, R.A., T.E. Holzer, Dynamics of coronal hole regions, I. Steady polytropic flows with multiple critical points. Solar Phys., 49 43–56. 1976.ADSGoogle Scholar
  151. 8.151
    Kopp, R.A., F.Q. Orrall. Models of coronal holes above the transition region, in Coronal Holes and High Speed Streams, ed. by J.B. Zirker. Colorado Associated University Press, Boulder, Colorado, USA, 179–224, 1977.Google Scholar
  152. 8.152
    Kuperus, M., Heating processes of the solar corona, in Plasma Astrophysics, ed. by T.D. Guyenne and G. Levy. ESA-SP 161, Noordwijk, Netherlands. 113–128. 1981.Google Scholar
  153. 8.153
    Kraichnan, R.H., Inertial-range spectrum of hydromagnetic turbulence, Phys. Fluids 8, 1385- 1387, 1965.MathSciNetADSGoogle Scholar
  154. 8.154
    Lakhma, G.S., Regulation of solar wind heat flux by ordinary mode instabsility. Solar Phys., 52. 153–162. 1977.ADSGoogle Scholar
  155. 8.155
    Lakhina, G.S.. Ion cyclotron instability in the solar wind. Solar Phys., 57, 467–473. 1978.ADSGoogle Scholar
  156. 8.156
    Lakhina, G.S., B. Buti, Stability of solar wind double ion streams, J. Geophys. Res., 81. 2135–2139, 1976.ADSGoogle Scholar
  157. 8.157
    Lee, M.A., I. Lerche, Waves and irregularities in the solar wind. Rev. Geophys. Space Phys., 12, 671–687, 1974.ADSGoogle Scholar
  158. 8.158
    Leer, E., W.I. Axford, A two fluid model with anisotropic proton temperature. Solar Phys., 23, 238–250, 1972.ADSGoogle Scholar
  159. 8.159
    Leer, E., T.E. Holzer. Collisionless solar wind protons: A comparison of kinetic and hydro- dynamic descriptions, J. Geophys. Res., 77. 4035–4041. 1972.ADSGoogle Scholar
  160. 8.160
    Leer, E.. T.E. Holzer, Constraints on the solar coronal temperature in regions of open magnetic field. Solar Phys., 63, 143–156, 1979.ADSGoogle Scholar
  161. 8.161
    Leer, E., T.E. Holzer, Energy addition to the solar wind, J. Geophys. Res., 85, 4681–4688, 1980.ADSGoogle Scholar
  162. 8.162
    Leer, E., T£. Holzer, T. Flå, Acceleration of the solar wind. Space Sci. Rev., 33, 161–200, 1982.ADSGoogle Scholar
  163. Lemaire, J., M. Scherer, Kinetic models of the solar wind, J. Geophys. Res., 76, 7479–7490, 1971.ADSGoogle Scholar
  164. 8.164
    Lemaire, J., M. Scherer, Kinetic models of the solar and polar wind. Rev. Geophys. Space Phys., 11, 427–468, 1972.ADSGoogle Scholar
  165. 8.165
    Lemons, D.S., S.P. Gary, Temperature anisotropy instability in a plasma of two ion components, J. Plasma Phys, 15, 83–89, 1976.ADSGoogle Scholar
  166. 8.166
    Lemons, D.S., W.C. Feldman, Collisional modification to the exospheric theory of solar wind halo electron pitch angle distributions, J. Geophys. Res., 88, 6881–6687, 1983.ADSGoogle Scholar
  167. 8.167
    Leubner, M.P., Influence of non-bi-Maxwellian distribution function of solar wind protons on the ion cyclotron instability, J. Geophys. Res., 83, 3900–3902, 1978.ADSGoogle Scholar
  168. 8.168
    Leubner, M.P., Velocity distribution function and cyclotron wave growth in a modified bi- Maxwellian two-ion-component solar wind plasma, J. Geophys. Res., 84, 2661–2665, 1979.ADSGoogle Scholar
  169. 8.169
    Leubner, M.P., A.F. Viñas, Stability analysis of double peaked proton distribution functions in the solar wind, J. Geophys. Res., 91, 13366–13372, 1986.ADSGoogle Scholar
  170. 8.170
    Livi, S., E. Marsch, On the collisional relaxation of solar wind velocity distributions, Ann. Geophys., 4A, 333–340, 1986.ADSGoogle Scholar
  171. 8.171
    Livi, S., E. Marsch, H. Rosenbauer, Coulomb collisional domains in the solar wind, J. Geophys., 91, 8045–8050, 1986.ADSGoogle Scholar
  172. 8.172
    Livi, S., E. Marsch, Comparison of the Bhatnagar-Gross-Krook-approximation with the exact Coulomb collision operator, Phys. Rev. A, 34, 533–540, 1986.ADSGoogle Scholar
  173. 8.173
    Livi, S., E. Marsch, Generation of solar wind proton tails and double beams by Coulomb collisions, J. Geophys. Res., 92, 7255–7261, 1987.ADSGoogle Scholar
  174. 8.174
    Lomonosov, V.N., The heating of solar-wind protons by Alfvén waves in the inner heliosphere, Geomagnetism and Aeronomy, 27, 313–316, 1987.Google Scholar
  175. 8.175
    Lopez, R.E., J.W. Freeman, Solar wind proton temperature-velocity relationship, J. Geophys. Res., 91, 1701–1705, 1986.ADSGoogle Scholar
  176. 8.176
    Mariani, F., F.M. Neubauer, The interplanetary magnetic field.Physics of the Inner Heliosphere, Vol 1, ed. by R. Schwenn and E. Marsch, Springer-Verlag, Berlin, Heidelberg, New York, 183–206, 1990.Google Scholar
  177. 8.177
    Marsch, E., Velocity distributions of solar wind ions and electrons, in Proceedings of a Course & Workshop on Plasma Astrophysics, Varenna, Italy, 28 Aug-7 Sept 1984, ESA SP-207, 33–40, 1984.Google Scholar
  178. 8.178
    Marsch, E., Energy input into the solar wind, in Proceedings of an ES A workshop on “Future missions in solar, heliospheric and space plasma physics”, ESA SP-235, 11–21, 1985.Google Scholar
  179. 8.179
    Marsch, E., Beam-driven electron acoustic waves upstream of the earth’s bow shock, J. Geophys. Res., 90, 6327–6336, 1985.ADSGoogle Scholar
  180. 8.180
    Marsch, E., Acceleration potential and angular momentum of undamped MHD waves in stellar winds, Astron. Astrophys., 164 77–85, 1986.ADSMATHGoogle Scholar
  181. 8.181
    Marsch, E., Wave-particle interactions in the solar wind, in Proceedings of the workshop on “Nonlinear phenomena in Vlasov plasmas”, ed. by F. Doveil, l’lnstitut d’Etudes Scientifiques de Cargèse, Corsica, France, 145–162, 1988.Google Scholar
  182. Marsch, E., MHD turbulence in the solar wind, in Physics of the Inner Heliosphere, (this volume).Google Scholar
  183. 8.183
    Marsch, E., K.-H. Mühlhäuser, W.G. Pilipp, R. Schwenn, H. Rosenbauer, Liitial results on solar wind alpha particle distributions as measured by Helios between 0.3 and 1 AU, in Solar Wind Four, ed. by H. Rosenbauer, Report MPAE-W-100–81-31, Max-Planck-Institut für Aeronomie, Katlenburg-Lindau, F.R.Germany, 443–449, 1981.Google Scholar
  184. 8.184
    Marsch, E., K.-H. Mühlhäuser, H. Rosenbauer, R. Schwenn, K.U. Denskat, Pronounced proton core temperature anisotropy, ion differential speed, and simultaneous Alfvén wave activity in slow solar wind at 0.3 AU, J. Geophys. Res., 86, 9199–9203, 1981.ADSGoogle Scholar
  185. 8.185
    Marsch, E., K.-H. Mühlhäuser, H. Rosenbauer, R. Schwenn, FM. Neubauer, Solar wind helium ions: Observations of the Helios solar probes between 0.3 and 1 AU, J. Geophys. Res., 87, 35–51, 1982.ADSGoogle Scholar
  186. 8.186
    Marsch, E., K.-H. Mühlhäuser, R. Schwenn, H. Rosenbauer, W.G. Pilipp, F.M. Neubauer, Solar wind protons: Three-dimensional velocity distributions and derived plasma parameters measured between 0.3 and 1 AU, J. Geophys. Res., 87, 52–72, 1982.ADSGoogle Scholar
  187. 8.187
    Marsch, E., T. Chang, Lower hybrid waves in the solar wind, Geophys. Res. Lett., 9, 1155- 1158, 1982.ADSGoogle Scholar
  188. 8.188
    Marsch, E., C.K. Goertz, K. Richter, Wave heating and acceleration of solar wind ions by cyclotron resonance, J. Geophys. Res., 87, 5030–5044, 1982.ADSGoogle Scholar
  189. 8.189
    Marsch, E., T. Chang, Electromagnetic lower hybrid waves in the solar wind, J. Geophys. Res., 88, 6869–6880, 1983.ADSGoogle Scholar
  190. 8.190
    Marsch, E., K.-H. Mühlhäuser, H. Rosenbauer, R. Schwenn, On the equation of state of solar wind ions derived from Helios measurements, J. Geophys. Res., 88, 2982–2992, 1983.ADSGoogle Scholar
  191. 8.191
    Marsch E., H. Goldstein, The effects of Coulomb collisions on solar wind ion velocity distributions, J. Geophys. Res., 88, 9933–9940, 1983.ADSGoogle Scholar
  192. 8.192
    Marsch, E., A.K. Richter, Distribution of solar wind angular momentum between particles and magnetic field: Inferences about the Alfvén critical point from Helios observations, J. Geophys. Res., 89, 5386–5394, 1984.ADSGoogle Scholar
  193. 8.193
    Marsch, E., A.K. Richter, Helios observational constraints on solar wind expansion, J. Geophys. Res., 89, 6599–6612, 1984.ADSGoogle Scholar
  194. 8.194
    Marsch, E., S. Livi, Coulomb collision rates for the self-similar and kappa distributions, Phys. Fluids, 28, 1379–1386, 1985.ADSMATHGoogle Scholar
  195. 8.195
    Marsch, E., S. Livi, Coulomb self-collision frequencies for nonthermal velocity distributions in the solar wind, Annales Geophysicae, 3, 545–556, 1985.ADSGoogle Scholar
  196. 8.196
    Marsch, E., A.K. Richter, On the equation of state and collision time for a multicomponent, anisotropic solar wind, Ann. Geophys., 5A, 71–82, 1987.ADSGoogle Scholar
  197. 8.197
    Marsch, E., S. Livi, Observational evidence for marginal stability of solar wind ion beams, J. Geophys. Res., 92, 7263–7268, 1987.ADSGoogle Scholar
  198. 8.198
    Marsch, E., W.G. Pilipp, K.M. Thieme, H. Rosenbauer, Cooling of solar wind electron inside 0.3 AU, J. Geophys. Res., 94, 6893–6898, 1989.ADSGoogle Scholar
  199. 8.199
    Marsden, R.G., K.P. Wenzel, The international solar polar mission (ISPM), in Plasma Astrophysics, ed. by T.D. Guyenne and G. Levy, ESA-SP 161, XXX Noordwijk, Netherlands, 167–175, 1981.Google Scholar
  200. 8.200
    Matthaeus, WU., M.L. Goldstein, Magnetohydrodynamic turbulence in the solar wind, in Solar Wind Five, ed. by M. Neugebauer, NASA Conference Publication 2280, Washington, USA, 73–80, 1983.Google Scholar
  201. 8.201
    McKenzie, J.F., W.H. Ip, W.L Axford, The acceleration of minor ion species in the solar wind, Astrophys. Space Sci., 64, 183–211, 1979.ADSGoogle Scholar
  202. 8.202
    McKenzie, J.F., E. Marsch, Resonant wave acceleration of minor ions in the solar wind, Astrophys. Space Sci., 81, 295–314, 1982.ADSMATHGoogle Scholar
  203. 8.203
    Melrose, D.B., Instabilities in Space and Laboratory Plasmas, Cambridge University Press, Cambridge, 1986.Google Scholar
  204. 8.204
    Mihalov, J.D., J.H. Wolfe, Pioneer-10 observation of the solar wind proton temperature heliocentric gradient. Solar Phys. 60, 399–406, 1978.ADSGoogle Scholar
  205. 8.205
    Mitchell, D.G., E.C. Roelof, W.C. Feldman, SJ. Bame, DJ. Williams, Thermal iron ions m high-speed solar wind streams, 2. Temperatures and bulk velocities, Geophys, Res. Lett., 8, 827–830, 1981.ADSGoogle Scholar
  206. 8.206
    Montgomery, D.M., Theory of hydromagnetic turbulence, in Solar Wind Five, ed. by M. Neugebauer, NASA Conference Publication 2280, Washington, USA, 107–130, 1983.Google Scholar
  207. 8.207
    Montgomery, D., M.R. Brown, W.H. Matthaeus, J. Geophys, Res., 92, 282–284, 1987.ADSGoogle Scholar
  208. 8.208
    Montgomery, M.D., S J. Bame, AJ. Hundhausen, Solar wind electrons: Vela 4 measurements, J. Geophys. Res., 73, 4999–5003, 1968.ADSGoogle Scholar
  209. 8.209
    Montgomery, M.D., S.P. Gary, D.W. Forslund, W.C. Feldman, Electromagnetic ion-beam instabilities in the solar wind, Phys. Rev. Lett., 35, 667–670, 1975.ADSGoogle Scholar
  210. 8.210
    Montgomery, M.D., S.P. Gary, W.C. Feldman, D.W. Forslund, Electromagnetic instabilities driven by unequal proton beams in the solar wind, J. Geophys. Res., 81, 2743–2749, 1976.ADSGoogle Scholar
  211. 8.211
    Munro, R.H., B.V. Jackson, Physical properties of a coronal hole from 2 to 5 R , Astrophys. J., 213, 874–886, 1977.ADSGoogle Scholar
  212. 8.212
    Neubauer, F.M., G. Musmarm, G. Dehmel, Fast magnetic fluctuations in the solar wind: Helios 1, J. Geophys. Res., 82, 3201–3212, 1977.ADSGoogle Scholar
  213. 8.213
    Neugebauer, M., The quiet solar wind, J. Geophys. Res., 81, 4664–4670, 1976.ADSGoogle Scholar
  214. 8.214
    Neugebauer, M., The role of Coulomb collisions in limiting differential flow and temperature differences in the solar wind, J. Geophys. Res., 81, 78–82, 1976.ADSGoogle Scholar
  215. 8.215
    Neugebauer, M., Observations of solar wind helium, Fundam. Cosmic Phys., 7, 131–199, 1981.ADSGoogle Scholar
  216. 8.216
    Neugebauer, M., C.W. Wu, J.D. Huba, Plasma fluctuations in the solar wind, J. Geophys. Res., 83, 1027–1033, 1978.ADSGoogle Scholar
  217. 8.217
    Neugebauer, M., W.C. Feldman, Relation between superheating and superacceleration of helium in the solar wind. Solar Phys., 63, 201–205, 1979.ADSGoogle Scholar
  218. 8.218
    Neupert, W.M., V. Pizzo, Solar coronal holes as sources of recurrent geomagnetic disturbances, J. Geophys. Res., 79, 3701–3709, 1974.ADSGoogle Scholar
  219. 8.219
    Ogilvie, K.W., J.D. Scudder, The radial gradient and collisionless properties of solar wind electrons, J. Geophys. Res., 83, 3776–3782, 1978.ADSGoogle Scholar
  220. 8.220
    Ogilvie, K.W., P. Bochsler, M.A. Coplan, J. Geiss, Observations of the velocity distribution of solar wind ions, J. Geophys. Res., 85, 6069–6074, 1980.ADSGoogle Scholar
  221. 8.221
    Olbert, S., Inferences about the solar wind dynamics from observed distributions of electrons and ions, in Proceedings of an International School and Workshop on Plasma Astropshysics, Varenna, Como, Italy, Eur. Space Agency Spec. Publ., ESA SP-161, 135–144, 1981.Google Scholar
  222. 8.222
    Olbert, S., The role of thermal conduction in the acceleration of the solar wind, in Solar Wind Five, ed. by M. Neugebauer, NASA Conference Publication 2280, Washington, USA, 149–162, 1983.Google Scholar
  223. 8.223
    Owocki, S.P., J.D. Scudder, The effect of a non-Maxwellian electron distribution on oxygen and iron ionization balances in the solar corona, Astrophys. J., 270, 758–768, 1983.ADSGoogle Scholar
  224. 8.224
    Owocki, S.P., R.C. Canfield, The role of nonclassical electron transport in the lower solar transition region, Astrophys. J., 300, 420–427, 1986.ADSGoogle Scholar
  225. 8.225
    Papadopoulus, K., Electrostatic turbulence at colliding plasma streams as the source of ion heating in the solar wind, Astrophys. J., 179, 931–938, 1973.ADSGoogle Scholar
  226. 8.226
    Parker, E.N., Dynamics of the interplanetary gas and magnetic fields, Astrophys. J., 128, 664–684, 1958.ADSGoogle Scholar
  227. 8.227
    Parker, E.N., Dynamical instability of an anisotropic gas of low density, Phys. Rev., 109, 1874–1876, 1958.ADSMATHGoogle Scholar
  228. 8.228
    Parker, E.N., Interplanetary Dynamical Processes, Interscience, New York, 1963.MATHGoogle Scholar
  229. 8.229
    Parker, E.N., Dynamical theory of the solar wind. Space Sci. Rev., 4, 666–708, 1965.ADSGoogle Scholar
  230. 8.230
    Pilipp, W.G., R. Schwenn, E. Marsch, K.-H. Mühlhäuser, H. Rosenbauer, Electron characteristics in the solar wind as deduced from Helios observations in Solar Wind Four, ed. by H. Rosenbauer, Report MPAE-W-100–81-31, Max-Planck-Institut für Aeronomie, Katlenburg- Lindau, F.R. Germany, 241–249, 1981.Google Scholar
  231. 8.231
    Pilipp, W.G., Solar wind electrons as a probe for the global structure of the interplanetary magnetic field, in Topics in Plasma-, Astro-, and Space Physics, ed. by G. Haerendel and B. Battrick, Max-Planck-Institut für Physik und Astrophysik, Institut für Extraterrestrische Physik, Garching bei München, F.R.Germany, 91–107, 1983.Google Scholar
  232. 8.232
    Pilipp, W.G., H. Miggenrieder, K.-H. Mühlhäuser, H. Rosenbauer, R. Schwenn, F.M. Neubauer, Variations of electron distribution functions in the solar wind, J. Geophys. Res., 92, 1103–1118, 1987.ADSGoogle Scholar
  233. 8.233
    Pilipp, W.G., H. Miggenrieder, M.D. Montgomery, K.-H. Mühlhäuser, H. Rosenbauer, R. Schwenn, Characteristics of electron velocity distribution functions in the solar wind derived from the Helios plasma experiment, J. Geophys. Res., 92, 1075–1092, 1987.ADSGoogle Scholar
  234. 8.234
    Pilipp, W.G., H. Miggenrieder, M.D. Montgomery, K.-H. Mühlhäuser, H. Rosenbauer, R. Schwenn, Unusual electron distribution functions in the solar wind derived from the Helios plasma experiment: Double-strahl distributions and distributions with an extremely anisotropic core, J. Geophys. Res., 92, 1093–1101, 1987.ADSGoogle Scholar
  235. 8.235
    Pilipp, W.G., H. Miggenrieder, K.H. Mühlhäuser, H. Rosenbauer, R. Schwenn, Large scale variations of thermal electron parameters in the solar wind, J. Geophys. Res., in press, 1988.Google Scholar
  236. Pizzo, VJ., Quasi-steady solar wind dynamics, in Solar Wind Five, ed. by M. Neugebauer, NASA Conference Publication 2280, Washington, USA, 675–691, 1983.Google Scholar
  237. 8.237
    Pizzo, v., R. Schwenn, E. Marsch, H. Rosenbauer, K.H. Mühlhäuser, F.M. Neubauer, Determination of the solar wind angular momentum flux from Helios data-An observational test of the Weber and Davis theory, Astrophys. J., 271, 335–354, 1983.ADSGoogle Scholar
  238. 8.238
    Priest, E.R., Solar Magnetohydrodynamics, D. Reidel Publishing Company, Dordrecht, The Netherlands, 1982.Google Scholar
  239. 8.239
    Randolph, J.E., Solar probe study, in A Close Up of the Sun, ed. by M. Neugebauer and R.W. Davies, JPL Publication 78–70, Jet Propulsion Laboratory, Pasadena, California, USA, 521–534, 1978.Google Scholar
  240. 8.240
    Richter, A.K., K.C. Hsieh, A.H. Luttrell, E. Marsch, R. Schwenn, Review of interplanetary shock phenomena near and within 1 AU, in Collisionless Shocks in the Heliosphere: Reviews of Current Research, ed. by B.T. Tsurutani and R.G. Stone, Geophysical Monograph, 35, 33–50, 1985.Google Scholar
  241. 8.241
    Rosenbauer, H., R. Schwenn, E. Marsch, B. Meyer, H. Miggenrider, M.D. Montgomery, K.-H. Mühlhäuser, W.G. Pilipp, W. Voges, S.M. Zink, A survey of initial results of the Helios plasma experiment, J. Geophys., 42, 561–580, 1977.Google Scholar
  242. 8.242
    Rossi, P.B., S. Olbert, Introduction to the Physics of Space, McGraw-Hill, New York, 1970.Google Scholar
  243. 8.243
    Rottman, GJ., F.Q. Orrall, Observational evidence for solar wind acceleration at the base of coronal holes, in Solar Wind Five, ed. by M. Neugebauer, NASA Conference Publication 2280, Washington, USA, 199–210, 1983.Google Scholar
  244. 8.244
    Scarf, F.L., Microscopic structure of the solar wind. Space Sci. Rev., 11, 234–270, 1970.Google Scholar
  245. 8.245
    Scarf, F.L., D.A. Gumett, W.S. Kurth, The first year of Voyager plasma wave observations in the solar wind, in Solar Wind Four, ed. by H. Rosenbauer, Report MPAE-W-100–81-31, Max-Planck-Institut für Aeronomie, Katlenburg-Lindau, F.R.Germany, 305–316, 1981.Google Scholar
  246. 8.246
    Scarf, F.L.., J.H. Wolfe, R.W. Silva, A plasma instability associated with thermal anisotropies m the solar wind, J. Geophys. Res., 72, 993–1005, 1967.ADSGoogle Scholar
  247. 8.247
    Schmidt, J., P. Bochsler, J. Geiss, Velocity of iron ions in the solar wind, J. Geophys. Res., 92, 9901–9906, 1987.ADSGoogle Scholar
  248. 8.248
    Schmidt, W.K.H., H. Rosenbauer, E.G. Shelley, J. Geiss, On temperature and speed of He2+ and O6+ ions in the solar wind, Geophys. Res. Lett., 7, 697–700, 1980.ADSGoogle Scholar
  249. 8.249
    Schwartz, SJ., Microturbulence of the solar wind, 1. Analytical results for fast mode instability growth rates, J. Geophys. Res., 83, 3745–3752, 1978.ADSGoogle Scholar
  250. 8.250
    Schwartz, S.J., Plasma instabilities in the solar wind: A theoretical review. Rev. Geophys. Space Phys., 18, 313–336, 1980.ADSGoogle Scholar
  251. 8.251
    Schwartz, S.J., W.C. Feldman, S.P. Gary, The source of proton anisotropy in the high-speed solar wind, J. Geophys. Res., 86, 541–546, 1981.ADSGoogle Scholar
  252. 8.252
    Schwartz, S.J., W.C. Feldman, S.P. Gary, Wave-electron interactions in the high speed solar wind, J. Geophys. Res., 86, 4574–4578, 1981.ADSGoogle Scholar
  253. 8.253
    Schwartz, S.J., E. Marsch, The radial evolution of a single solar wind plasma parcel, J. Geophys. Res., 88, 9919–9932, 1983.ADSGoogle Scholar
  254. 8.254
    Schwenn, R., The “average” solar wind in the inner heliosphere: Structures and slow variations, in Solar Wind Five, ed. by M. Neugebauer, NASA Conference Publication 2280, Washington, USA, 489–508, 1983.Google Scholar
  255. 8.255
    Schwenn, R., Direct correlations between coronal transients and interplanetary disturbances. Space Sci. Rev., 34, 85–99, 1983.ADSGoogle Scholar
  256. 8.256
    Schwenn, R., Relationship of coronal transients to interplanetary shocks: 3-D aspects. Space Sci. Rev., 44, 139–168, 1986.Google Scholar
  257. 8.257
    Schwenn, R., Large scale structure of the interplanetary medium, in Physics of the inner Heliosphere, Vol 1, ed. by R. Schwenn and E. Marsch, Springer-Verlag, Beriin, Heidelberg, New York, 99–181, 1990.Google Scholar
  258. 8.258
    Schwenn, R., M.D. Montgomery, H. Rosenbauer, H. Miggenrieder, K.H. Mühlhäuser, S J. Bame, W.C. Feldman, R.T. Hansen, Direct observations of the latitudinal extent of a high speed stream in the solar wind, J. Geophys. Res., 83, 1011–1018, 1978.ADSGoogle Scholar
  259. 8.259
    Schwenn, R., K.-H. Mühlhäuser, E. Marsch, and H. Rosenbauer, Two states of the solar wind at the time of solar activity minimum, 11, Radial gradients of plasma parameters in fast and slow streams, in Solar Wind Four, ed. by H. Rosenbauer, Report MPAE-W-100–81-31, Max-Planck-Institut für Aeronomie, Katlenburg-Lindau, F.R.Germany, 126–130, 1981.Google Scholar
  260. 8.260
    Scudder, J.D., S. Olbert, A theory of local and global processes which affect solar wind electrons, 1. The origin of typical 1 AU velocity distribution functions - Steady state theory, J. Geophys. Res., 84, 2755–2772, 1979.ADSGoogle Scholar
  261. 8.261
    Scudder, J.D., S. Olbert, A theory of local and global processes which affect solar wind electrons, 2. Experimental support, J. Geophys. Res.84, 6603–6620, 1979.ADSGoogle Scholar
  262. 8.262
    Sheeley, N.R., J.W. Harvey, W.C. Feldman, Coronal holes, solar wind streams, recurrent geomagnetic disturbances: 1973–1976, Solar Phys., 49, 271–278, 1976.ADSGoogle Scholar
  263. 8.263
    Sheeley, N.R., Jr., R.A. Howard, M.J. Koomen, D.J. Michels, R. Schwenn, K.H. Mühlhäuser, H. Rosenbauer, Association between coronal mass ejections and interplanetary shocks, in Solar Wind Five, ed. by M. Neugebauer, NASA Conference Publication 2280, Washington, USA, 693–702, 1983.Google Scholar
  264. 8.264
    Sheeley, N.R., R.A. Howard, M.J. Koomen, D.J. Michels, K.L. Harvey, J.W. Harvey, Observations of coronal structure during sunspot maximum. Space Sci. Rev., 33, 219–231, 1983.ADSGoogle Scholar
  265. 8.265
    Shoub, E.C., Invalidity of local thermodynamic equilibrium for electrons in the solar transition region. I. Fokker-Planck results, Astrophys. J., 266, 339–369, 1983.ADSGoogle Scholar
  266. 8.266
    Shoub, E.C., Failure of the Fokker-Planck approximation to the Boltzmann integral for 1/r potentials, Phys. Fluids, 30, 1340–1352, 1987.ADSMATHGoogle Scholar
  267. 8.267
    Singer, C.E., I.W. Roxburgh, The onset of microinstabilities and its consequences in the solar wind, J. Geophys. Res., 82, 2677–2685, 1977.ADSGoogle Scholar
  268. 8.268
    Sittler, E.C., Jr., J.D. Scudder, An empirical polytrope law for solar wind thermal electrons between 0.45 and 4.76 AU: Voyager 2 and Mariner 10, J. Geophys. Res., 85, 5131–5137, 1980.ADSGoogle Scholar
  269. 8.269
    Smith, E.J., Observations of interplanetary shocks: Recent progress. Space Sci. Rev., 34, 101–110, 1984.ADSGoogle Scholar
  270. 8.270
    Spitzer, L., Physics of Fully Ionized Gases, Interscience Publ., New York, 1962.Google Scholar
  271. 8.271
    Thieme, K.M., E. Marsch, H. Rosenbauer, Estimates of alpha particle heating in the solar wind inside 0.3 AU, J. Geophys. Res., 94, 2673–2676, 1988.ADSGoogle Scholar
  272. 8.272
    Thieme, K.M., R. Schwenn, E. Marsch, Are structures in high-speed streams signatures of coronal fine structures?. Advances in Space Research, 9, (4), 127–130, 1989.ADSGoogle Scholar
  273. 8.273
    Tu, C.-Y., A solar wind model with the power spectrum of Alfvénic fluctuations. Solar Phys., 109, 149–186, 1987.ADSGoogle Scholar
  274. 8.274
    Tu, C.-Y., The damping of interplanetary Alfvénic fluctuations and the heating of the solar wind, J. Geophys. Res., 93, 7–20, 1988.ADSGoogle Scholar
  275. 8.275
    Tu, C.-Y., Z.-Y. Pu, F.-S. Wei, The power spectrum of interplanetary Alfvénic fluctuations: Derivation of the governing equation and its solution, J. Geophys. Res., 89, 9695–9702, 1984.ADSGoogle Scholar
  276. 8.276
    Tu, C.-Y., L. Dong, Dissipation mechanism of interplanetary Alfvénic fluctuations. Chin. Astron. Astrophys., 9, 60–65, 1985.ADSGoogle Scholar
  277. 8.277
    Tu, C.-Y., J.W. Freeman, R.E. Lopez, The proton temperature and the total hourly variance of the magnetic field components in different solar wind speed regions. Solar Phys., 119, 197–206, 1988.ADSGoogle Scholar
  278. 8.278
    Tu, C.-Y., D.A. Roberts, M.L. Goldstein, Determination of the spectral evolution and cascade constant in solar wind Alfvénic turbulence observed cross helocity values, J. Geophys. Res., in print, 1989.Google Scholar
  279. 8.279
    Volk, HJ., Microstructure of the solar wind. Space Sci. Rev., 17, 255–276, 1975.ADSGoogle Scholar
  280. 8.280
    Weber, E.J., L. Davis, The angular momentum of the solar wind, Astrophys. J., 148,217–227, 1967.ADSGoogle Scholar
  281. 8.281
    Whang, Y.C., Higher moment equations and the distribution fimction of the solar wind plasma, J. Geophys. Res., 76, 7503–7507, 1971.ADSGoogle Scholar
  282. 8.282
    Whang, Y.C., T.H. Chien, Magnetohydrodynamic interaction of high-speed streams, J. Geophys. Res., 86, 3263–3272, 1981.ADSGoogle Scholar
  283. 8.283
    Winske, D., M.M. Leroy, Diffuse ions produced by electromagnetic ion beam instabilities, J. Geophys. Res., 89, 2673–2688, 1984.ADSGoogle Scholar
  284. 8.284
    Winske, D., C.S. Wu, Y.Y. Li, Z.Z. Mou, J.Y. Guo, Coupling of newborn ions to the solar wind by electromagnetic instabilities and their interaction with the bow shock, J. Geophys. Res., 90, 2713–2726, 1985.ADSGoogle Scholar
  285. 8.285
    Winske, D., S.P. Gary, Electromagnetic instabilities driven by cool heavy ion beams, J. Geophys. Res., 91, 6825–6832, 1986.ADSGoogle Scholar
  286. 8.286
    Withbroe, G.L., The chromospheric and transition layers in coronal holes, in Coronal Holes and High Speed Streams, ed. by J.B. Zirker, Colorado Associated University Press, Boulder, Colorado, USA, 145–177, 1977.Google Scholar
  287. 8.287
    Withbroe, G.L., The temperature structure, mass and energy flow in the corona and inner solar wind, Astrophys. J., 325, 442–467, 1988.ADSGoogle Scholar
  288. 8.288
    Withbroe, G.L., J.L. Kohl, H. Weiser, R.H. Munro, Probing the solar wind acceleration region using spectroscopic techniques, Space Sci. Rev., 33, 17–52, 1982.ADSGoogle Scholar
  289. 8.289
    Withbroe, G.L., J.C. Raymond, Plasma diagnostics for the outer solar corona: UV and XUV Fe XII lines, Astrophys. J., 285, 347–353, 1984.ADSGoogle Scholar
  290. 8.290
    Woo, R., Spacecraft radio scintillation and scattering measurements of the solar wind, in Solar Wind Four, ed. by H. Rosenbauer, Report MPAE-W-100–81-31,  Max-Planck-Institut für Aeronomie, Katlenburg-Lindau, F.R. Germany, 66–77, 1981.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • Eckart Marsch

There are no affiliations available

Personalised recommendations