Skip to main content

Kinetic Physics of the Solar Wind Plasma

  • Chapter

Part of the book series: Physics and Chemistry in Space ((SPACE,volume 21))

Abstract

The interplanetary medium has been continuously explored for more than two decades and substantial progress has been made, both with regard to in situ measurements and a theoretical understanding of the solar wind. Concurrently, measurement techniques for remote sensing of its source regions in the solar corona by means of photons covering the full electromagnetic spectrum from γ-rays to radar have also become mature. The results obtained have greatly improved and corroborated our knowledge about the solar wind from the very coronal base to several solar radii and further out into interplanetary space (see the reviews [8.15, 66–68, 76, 109, 119, 120, 126, 131, 134, 215, 245] and [8.22, 23, 26, 286, 288]). However, even after completion of the Helios mission there remains an important but poorly explored region in the inner heliosphere below 0.3 AU to be investigated and, of course, the wide space out of the ecliptic plane and above the solar poles. Whereas a solar probe, the feasibility of which has already been demonstrated [8.239], may possibly be realized in the far future, the out-of-ecliptic mission [8.199] is soon to become reality and will certainly help to comprehend better the three-dimensional structure of the heliosphere.

In partial fulfilment of the requirements for the venia legendi in astronomy and astrophysics at Göttingen University

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abraham-Shrauner, B., W.C. Feldman, Whistler heat flux instability in the solar wind with bi-Lorentzian velocity distributions, J. Geophys. Res., 82, 1889–1892, 1977.

    ADS  Google Scholar 

  2. Abraham-Shrauner, B., W.C. Feldman, Nonlinear Alfvén waves in high-speed solar wind streams. J. Geophys. Res., 82, 618–624, 1977.

    ADS  Google Scholar 

  3. Abraham-Shrauner, B., J.R. Asbridge, S J. Bame, W.C. Feldman, Proton-driven electromagnetic instabilities in high-speed solar wind streams, J. Geophys. Res., 84, 553–559, 1979.

    ADS  Google Scholar 

  4. Asbridge, J.R., S J. Bame, W.C. Feldman, M.D. Montgomery, Helium and hydrogen velocity differences in the solar wind, J. Geophys. Res., 81, 2719–2727, 1976.

    ADS  Google Scholar 

  5. Axford, W.L, The solar wind, Solar Phys., 100, 575–586, 1985.

    Google Scholar 

  6. Bame, S J., J.R. Asbridge, W.C. Feldman, P.D. Keamy, The quiet corona: temperature and temperature gradient. Solar Phys., 35, 137–142, 1974.

    ADS  Google Scholar 

  7. Bame, S.J., J.R. Asbridge, W.C. Feldman, M.D. Montgomery, P.D. Keamey, Solar wind heavy ion abundances. Solar Phys., 43, 463–473, 1975.

    ADS  Google Scholar 

  8. Bame, S.J., J.R. Asbridge, W.C. Feldman, S.P. Gary, M.D. Montgomery, Evidence for local ion heating in solar wind high speed streams, Geophys. Res. Lett., 2, 373–375, 1975.

    ADS  Google Scholar 

  9. Barakat, A.R., R.W. Schunk, Transport equations for multicomponent anisotropic space plasmas: A review. Plasma Physics, 24, 389–418, 1982.

    MathSciNet  ADS  Google Scholar 

  10. Barnes, A., Collisionless damping of hydromagnetic waves, Phys. Fluids, 9, e.g. 1483, 1966.

    ADS  Google Scholar 

  11. Barnes, A. Stochastic electron heating and hydromagnetic wave damping, Phys. Ruids, 9, e.g. 2427, 1967.

    ADS  Google Scholar 

  12. Barnes, A., Quasi linear theory of hydromagnetic waves in collisionless plasma, Phys. Fluids, 11, 2644–2654, 1968.

    ADS  Google Scholar 

  13. Barnes, A., Collisionless heating of the solar wind plasma, 2. Application of the theory of plasma heating by hydromagnetic waves, Astrophys. J., 155, 311–321, 1969.

    ADS  Google Scholar 

  14. Barnes, A., Acceleration of the solar wind by the interplanetary magnetic field, Astrophys. J., 188, 645–648, 1974.

    ADS  Google Scholar 

  15. Barnes, A., Hydromagnetic waves and turbulence and in the solar wind, in Solar System Plasma Physics, Vol I, ed. by E.N. Parker, C.F. Kennel, L.J. Lanzerotti, North-Holland, Amsterdam, 249–319, 1979.

    Google Scholar 

  16. Bavassano, B., M. Dobrowolny, F. Mariani, N.F. Ness, Radial evolution of power spectra of interplanetary Alfvénic turbulence, J. Geophys. Res., 87, 3617–3622, 1982.

    ADS  Google Scholar 

  17. Behannon, K.W., Observations of the interplanetary magnetic field between 0.41 and 1 AU by the Mariner 10 spacecraft, Doc. 692–76-2, Goddard Space Flight Center, Greenbelt, Md., 1976.

    Google Scholar 

  18. Beinroth, H.J., F.M. Neubauer, Properties of whistler-mode waves between 0.3 and 1 AU from Helios observations, J. Geophys. Res., 86, 7755–7760, 1981.

    ADS  Google Scholar 

  19. Belcher, J.W., Alfvénic wave pressure and the solar wind, Astrophys. J., 168, 509–524, 1971.

    ADS  Google Scholar 

  20. Belcher, J.W., L. Davis, Large-amplitude Alfvén waves in the interplanetary medium, J. Geophys. Res., 76, 3534–3563, 1971.

    ADS  Google Scholar 

  21. Belcher, J.W., H.S. Bridge, A.J. Lazarus, J.D. Sullivan, Preliminary results from the Voyager solar wind experiment, in Solar Wind Four, ed. by H. Rosenbauer, Report MPAE-W-100–81- 31, Max-Planck-Institut für Aeronomie, Katlenburg-Lindau, F.R.Germany, 131–142, 1981.

    Google Scholar 

  22. Bird, M.K., Coronal investigations with occulated spacecraft signals. Space Sci. Rev., 33, 99–126, 1982.

    ADS  Google Scholar 

  23. Bird, M.K., P. Edenhofer, Remote sensing of the solar corona, in Physics of the Inner Heliosphere, Vol 1, ed. by R. Schwenn and E. Marsch, Springer-Verlag, Berlin, Heidelberg, New York, 13–97, 1990.

    Google Scholar 

  24. Bochsler, P., J. Geiss, R. Joos, Kinetic temperatures of heavy ions in the solar wind, J. Geophys. Res., 90, 10779–10789, 1985.

    ADS  Google Scholar 

  25. Bochsler, P., J. Geiss, S. Kunz, Abundances of carbon, oxygen, neon in the solar wind during the period from August 1978 to June 1982. Solar Phys., 103, 177–201, 1986.

    ADS  Google Scholar 

  26. Bohlm, J.D., E.O. Hulbert, An observational definition of coronal holes, in Coronal Holes and High Speed Streams, ed. by J.B. Zirker, Colorado Associated University Press, Boulder, Colorado, USA, 27–70, 1977.

    Google Scholar 

  27. Borrini, G., J.T. Gosling, S.J. Bame, W.C. Feldman, J.M. Wilcox, Solar wind helium and hydrogen structure near the heliospheric current sheet: a signal of coronal streamers at 1 AU, J. Geophys. Res., 86, 4565–4573, 1981.

    ADS  Google Scholar 

  28. Braginskii, S.L, Transport processes in plasma, in Review of Plasma Physics, Vol 1, ed. by M.A. Leontovich, Consultants Bureau, New York, 205–311, 1966.

    Google Scholar 

  29. Brandt, J.C., J.P. Cassinelli, Interplanetary gas, Icarus, 5, 47–63, 1966.

    Google Scholar 

  30. Brückner, G£., J.D.F. Bartoe, Observations of high energy jets in the corona above the quiet sun, the heating of the corona and the acceleration of the solar wind, Astrophys. J., 272, 329–348, 1983.

    ADS  Google Scholar 

  31. Bürgi, A., J. Geiss, Helium and minor ions in the corona and solar wind: Dynamics and charge states. Solar Phys., 103, 347–383, 1986.

    ADS  Google Scholar 

  32. Burlaga, L.F., Hydromagnetic waves and discontinuities in the solar wind, Space Sci. Rev., 12, 600–657, 1971.

    Google Scholar 

  33. Burlaga, L.F., K.W. Ogilvie, Heating of the solar wind, Astrophys. J., 159, 659–670, 1970.

    ADS  Google Scholar 

  34. Burlaga, L.F., J.F. Lemaire, J.M. Turner, Interplanetary current sheets at 1 AU, J. Geophys. Res., 82, 3191–3200, 1977.

    ADS  Google Scholar 

  35. Burlaga, L.F., K.W. Behannon, S.F. Hansen, G.W. Pneuman, W.C. Feldman, Sources of magnetic fields in recurrent interplanetary streams, J. Geophys. Res., 83, 4177–4185, 1978.

    ADS  Google Scholar 

  36. Burlaga, L., E. Sittler, F. Mariani, R. Schwenn, Magnetic loop behind an interplanetary shock: Voyager, Helios, IMP8 observations, J. Geophys. Res., 86, 6673–6684, 1981.

    ADS  Google Scholar 

  37. Burlaga, L.F., L. Klein, A magnetic cloud and a coronal mass ejection, Geophys. Res. Lett., 9, 1317–1320, 1982.

    ADS  Google Scholar 

  38. Burlaga, L., Magnetic clouds, in Physics of the Inner Heliosphere, Vol 1, ed. by R. Schwenn and E. Marsch, Springer-Verlag, Berlin, Heidelberg, New York, 1990.

    Google Scholar 

  39. Chew, G.F., M.L. Goldberger, F.E. Low, The Boltzmann equation and the one-fluid hydro- magnetic equations in the absence of particle collisions. Proc. Roy. Soc. London, 236A, e.g. 112, 1956.

    MathSciNet  ADS  Google Scholar 

  40. Coroniti, F.V., C.F. Kennel, F.L. Scarf, EJ. Smith, Whistler mode turbulence in the disturbed solar wind, J. Geophys. Res., 87, 6029–6044, 1982.

    ADS  Google Scholar 

  41. Cuperman, S., Electromagnetic kinetic instabilities in multicomponent space plasmas: Theoretical predictions and computer simulation experiments. Rev. Geophys. Space Sci., 19, 307–343, 1981.

    ADS  Google Scholar 

  42. Cuperman, S., Solar wind models, in Solar Wind Four, ed. by H. Rosenbauer, Report MPAE- W-100–81-31, Max-Planck-Institut für Aeronomie, Katlenburg-Lindau, F.R. Germany, 13–27, 1981.

    Google Scholar 

  43. Cuperman, S., R.W. Landau, Ion cyclotron resonant instability of RH waves propagating at an angle to the interplanetary magnetic field, Astrophys. Space Sci., 5, 333–341, 1969.

    ADS  Google Scholar 

  44. Cuperman, S., I. Weiss, M. Dryer, Higher order fluid equations for multicomponent nonequilibrium stellar (plasma) atmospheres and star clusters, Astrophys. J., 239, 345–359, 1980.

    MathSciNet  ADS  Google Scholar 

  45. Cuperman, S., I. Weiss, M. Dryer, Theoretical non-Maxwellian particle velocity distribution functions for spherically-symmetric solar wind-like plasma systems and consequences, Astrophys. J., 273, 363–373, 1983.

    ADS  Google Scholar 

  46. Cuperman, S., L. Ofman, M. Dryer, On the dispersion of ion-cyclotron waves in the H+-He++ solar wind-like magnetized plasma, J. Geophys. Res., 93, 2533–2538, 1988.

    ADS  Google Scholar 

  47. Denskat, K.U., F.M. Neubauer, R. Schwenn, Properties of “Alfvénic” fluctuations near the sun: Helios 1 and Helios 2, in Solar Wind Four, ed. by H. Rosenbauer, Report MPAE-W- 100–81-31, Max-Planck-Institut für Aeronomie, Katlenburg-Lindau, F.R.Germany, 392–397, 1981.

    Google Scholar 

  48. Denskat, K.U., F.M. Neubauer, Statistical properties of low irequency magnetic field fluctuations in the solar wind from 0.29 to 1 AU during solar minimum conditions: Helios 1 and Helios 2, J. Geophys. Res., 87, 2215–2223, 1982.

    ADS  Google Scholar 

  49. Dere, K.P., HTRS observations of the fine structure and dynamics of the solar chromosphere and transition zone, in Solar Wind Five, ed. by M. Neugebauer, NASA Conference Publication 2280, Washington, USA, 34–43, 1983.

    Google Scholar 

  50. Dobrowolny, M., G. Moreno, Plasma kinetics in the solar wind. Space Sci. Rev., 20,577–620, 1977.

    ADS  Google Scholar 

  51. Dobrowolny, M., M. Tessarotto, Electron kinetic instabilities in the solar wind, Astrophys. Space Sci., 57, 153–162, 1978.

    ADS  Google Scholar 

  52. Dobrowohiy, M., G. Torricelli-Ciamponi, Astron. Astrophys., 142, 404–410, 1985.

    ADS  Google Scholar 

  53. Dryer, M., Coronal transient phenomena. Space Sci. Rev., 33, 233–275, 1983.

    ADS  Google Scholar 

  54. Dulk, G.A., K.V. Sheridan, S.F. Smerd, G.L. Withbroe, Radio and EUV observations of a coronal hole. Solar Phys., 52, 349–367, 1977.

    ADS  Google Scholar 

  55. Dum, C.T., Electrostatic waves and anomalous transport in the solar wind, in Solar Wind Five, ed. by M. Neugebauer, NASA Conference Publication 2280, Washington, USA, 369–376, 1983.

    Google Scholar 

  56. Dum, C.T., E. Marsch, W. Pilipp, Analysis of electromagnetic instabilities using measured solar wind distribution functions, paper presented at the European Geophysical Society Meeting, Vienna, 1979.

    Google Scholar 

  57. Dum, C.T., E. Marsch, W.G. Pilipp, Determination of wave growth from measured distribution functions and transport theory, J. Plasma Phys., 23, 91–113, 1980.

    ADS  Google Scholar 

  58. Dum, C.T., E. Marsch, W.G. Pilipp, D.A. Gumett, Ion sound turbulence in the solar wind, in Solar Wind Four, ed. by H. Rosenbauer, Report MPAE-W-100–81-31, Max-Planck-Institut für Aeronomie, Katlenburg-Lindau, F.R.Germany, 299–304, 1981.

    Google Scholar 

  59. Dum, C.T., E. Marsch, W.G. Pilipp, D.A. Gumett, Ion sound wave instability in the solar wind, unpublished manuscript, 1988.

    Google Scholar 

  60. Dusenbery, P.B., J.V. Hollweg, Ion cyclotron heating and acceleration of solar wind minor ions, J. Geophys. Res., 86, 153–164, 1981.

    ADS  Google Scholar 

  61. Esser, R., E. Leer, S. Habbal, G.L. Withbroe, A two-fluid solar wind model with Alfvén waves: Parameter study and application to observations, J. Geophys. Res., 91, 2950–2960, 1986.

    ADS  Google Scholar 

  62. Esser, R., T.E. Holzer, E. Leer, Drawing inferences about solar wind acceleration from coronal minor ion observations, J. Geophys. Res., 92, 13377–13389, 1987.

    ADS  Google Scholar 

  63. Eviatar, A., M. Schulz, Ion temperature anisotropics and structure of the solar wind. Planet. Space Sci., 18, 321–332, 1970.

    ADS  Google Scholar 

  64. Eyni, M., A.S. Kaufman, The adiabatic cooling of the protons in the solar wind: The case where the interplanetary magnetic field is of spiral form, Astrophys. Space Sci., 28, 177–183, 1974.

    ADS  Google Scholar 

  65. Fahr, HJ., B. Shizgal, Modem exospheric theories and their observational relevance. Rev. Geophys., Space Phys., 21, 75–124, 1983.

    ADS  Google Scholar 

  66. Feldman, W.C., Solar wind plasma processes and transport. Rev. Geophys. Space Phys., 7, 1743–1751, 1979.

    ADS  Google Scholar 

  67. Feldman, W.C., Kinetic processes in the solar wind, in Solar System Plasma Physics, Vol I, ed. by E.N. Parker, C.F. Kennel, L.J. Unzerotti, North-Holland, Amsterdam, 331–344, 1979.

    Google Scholar 

  68. Feldman, W.C., J.R. Asbridge, S.J. Bame, M.D. Montgomery, Double ion streams in the solar wind, J. Geophys. Res., 78, 2017–2027, 1973.

    ADS  Google Scholar 

  69. Feldman, W.C., J.R. Asbridge, S.J. Bame, M.D. Montgomery, On the origin of solar wind proton thermal anisotropy, J. Geophys. Res., 78, 6451–6468, 1973.

    ADS  Google Scholar 

  70. Feldman, W.C., J.R. Asbridge, S.J. Bame, M.D. Montgomery, Interpenetrating solar wind streams. Rev. Geophys. Space Phys., 4, 715–723, 1974.

    ADS  Google Scholar 

  71. Feldman, W.C., J.R. Asbridge, S.J. Bame, The solar wind He2+ to H+ temperature ratio, J. Geophys. Res., 79, 2319–2323, 1974.

    ADS  Google Scholar 

  72. Feldman, W.C., J.R. Asbridge, S J. Bame, M.D. Montgomery, S.P. Gary, Solar wind electrons, J. Geophys. Res., 80,00 4181–4196, 1975.

    ADS  Google Scholar 

  73. Feldman, W.C., J.R. Asbridge, S.J. Bame, J.T. Gosling, High-speed solar wind flow parameters at 1 AU, J. Geophys. Res., 81, 5054–5060, 1976.

    ADS  Google Scholar 

  74. Feldman, W.C., J.R. Asbridge, S.J. Bame, S.P. Gary, M.D. Montgomery, Electron parameter correlations in high-speed streams and heat flux instabilities, J. Geophys. Res., 81, 2377–2382, 1976.

    ADS  Google Scholar 

  75. Feldman, W.C., J.R. Asbridge, S.J. Bame, S.P. Gary, M.D. Montgomery, S.M. Zink, Evidence for the regulation of solar wind heat flux at 1 AU, J. Geophys. Res., 81, 5207–5211, 1976.

    ADS  Google Scholar 

  76. Feldman, W.C., J.R. Asbridge, S.J. Bame, J.T. Gosling, Plasma and magnetic fields from the sun, in The Solar Output and its Variations, ed. by O.R. White, Colorado Associated University Press, Boulder, Colorado, 351–382, 1977.

    Google Scholar 

  77. Feldman, W.C., J.R. Asbridge, S.J. Bame, J.T. Gosling, D.S. Lemons, Characteristics electron variations across simple high-speed solar wind streams, J. Geophys. Res., 83, 5285–5295, 1978.

    ADS  Google Scholar 

  78. Feldman, W.C., J.R. Asbridge, S.J. Bame, J.T. Gosling, D.S. Lemons, Electron heating within interaction zones of simple high-speed solar wind streams, J. Geophys. Res., 83, 5297–5303, 1978.

    ADS  Google Scholar 

  79. Feldman, W.C., J.R. Asbridge, SJ. Bame, J.T. Gosling, D.S. Lemons, The core electron temperature profile between 0.5 and 1 AU in the steady-state high speed solar wind, J. Geophys. Res., 84, 4463–4467, 1979.

    ADS  Google Scholar 

  80. Feldman, W.C., J.R. Asbridge, S J. Bame, E.E. Fenimore, J.T. Gosling, The origins of solar wind interstream flows: near-equatorial coronal streamers, J. Geophys. Res., 86, 5408–5416, 1981.

    ADS  Google Scholar 

  81. Feldman, W.C., J.R. Asbridge, SJ. Bame, J.T. Gosling, Quantitative tests of a steady state theory of solar wind electrons, J. Geophys. Res., 87, 7355–7362, 1982.

    ADS  Google Scholar 

  82. Feynman, J., On solar wind helium and heavy ion temperatures. Solar Phys., 43, 249–252, 1975.

    ADS  Google Scholar 

  83. Flå, T., S.R. Habbal, T.E. Holzer, E. Leer, Fast-mode magnetohydrodynamic waves in coronal holes and the solar wind, Astrophys. J., 280, 382–390, 1984.

    ADS  Google Scholar 

  84. Forslund, D.W., Instabilities associated with heat conduction in the solar wind and their consequences, J. Geophys. Res., 75, 17–28, 1970.

    ADS  Google Scholar 

  85. Freeman, J.W., R.W. Lopez, The cold solar wind, J. Geophys. Res., 90 9885–9887, 1985.

    ADS  Google Scholar 

  86. Freeman, J.W., Estimates of solar wind heating inside 0.3 AU, Geophys. Res. Lett., 15, 88–91, 1988.

    ADS  Google Scholar 

  87. Fuselier, S.A., D.A. Gumett, R.J. Fitzenreiter, The downshift of electron plasma oscillations in the electron foreshock region, J. Geophs. Res., 90, 3935–3946, 1985.

    ADS  Google Scholar 

  88. Gary, S.P., Ion-acoustic-like instabilities in the solar wind, J. Geophys. Res., 83, 2504–2510, 1978.

    ADS  Google Scholar 

  89. Gary, S.P., Electrostatic heat flux instabilities, J. Plasma Phys., 20, 47–60, 1978.

    ADS  Google Scholar 

  90. Gary, S.P., Wave-particle transport from electrostatic instabilities, Phys. Fluids, 23, 1193- 1204, 1980.

    ADS  MATH  Google Scholar 

  91. Gary, S.P., Electrostatic instabilities in plasmas with two electron components, J. Geophys. Res., 90, 8213–8219, 1985.

    ADS  Google Scholar 

  92. Gary, S.P., The electron/electron acoustic instability, Phys. Fluids, 30, 2745–2749, 1987.

    ADS  Google Scholar 

  93. Gary, S.P., W.C. Feldman, D.W. Forslund, M.D. Montgomery, Electron heat flux instabilities in the solar wind, Geophys. Res. Lett., 2, 79–82, 1975.

    ADS  Google Scholar 

  94. Gary, SP., W.C. Feldman, D.W. Forslund, M.D. Montgomery, Heat flux instabilities in the solar wind, J. Geophys. Res., 80, 4197–4203, 1975.

    ADS  Google Scholar 

  95. Gary, S.P., W.C. Feldman, A second order theory for k\\B 0 electromagnetic instabilities, Phys. Fluids, 21, 72–80, 1978.

    MathSciNet  ADS  Google Scholar 

  96. Gary, S.P., J.T. Gosling, D.W. Forslund, The electromagnetic beam instability upstream of the earth’s bow shock, J. Geophys. Res., 86, 6691–6696, 1981.

    ADS  Google Scholar 

  97. Gary, S.P., C.D. Madland, B.T. Tsurutani, Electromagnetic ion beam instabilities: H, Phys. Fluids, 28, 3691–3695, 1985.

    ADS  MATH  Google Scholar 

  98. Gazis, P.R., A J. Lazarus, Voyager observations of solar wind proton temperature: 1–10 AU, Geophys. Res. Lett., 9, 431–434, 1982.

    ADS  Google Scholar 

  99. Geiss, J., Processes affecting abundances in the solar wind. Space Science Reviews, 33, 201–217, 1982.

    ADS  Google Scholar 

  100. Geiss, J., Diagnostics of corona by in-situ composition measurements at 1 AU, Proceedings of an ESA workshop on “Future missions in solar, heliospheric and space plasma physics”, ESA SP-235, 37–50, 1985.

    Google Scholar 

  101. Geiss, J., P. Bochsler, Ion composition in the solar wind in relation to solar abundances, in Rapports Isotopiques dans le Systeme Solaire, Cepadues-Editions, Paris, France, 1–16, 1985.

    Google Scholar 

  102. Geiss, J., P. Bochsler, Solar wind composition and what we expect to learn from out-of- ecliptic measurements, in The Sun and the Heliosphere in Three Dimensions, ed. by R.G. Marsden, D. Reidel Publishing Company, Dordrecht, 173–186, 1986.

    Google Scholar 

  103. Gendrin, R., Wave particle interactions as an energy transfer mechanism between different particle species. Space Sci. Rev., 34, 271–287, 1983.

    ADS  Google Scholar 

  104. Goodrich, C.C., A.J. Lazarus, Suprathermal protons in the interplanetary solar wind, J. Geophys. Res., 81, 2750–2754, 1976.

    ADS  Google Scholar 

  105. Gosling, J.T., E. Hildner, S.R. Asbridge, S J. Bame, W.C. Feldman, Noncompressive density enhancements in the solar wind, J. Geophys. Res., 82, 5005–5010, 1977.

    ADS  Google Scholar 

  106. Gosling, J.T., J.R. Asbridge, SJ. Bame, W.C. Feldman, Solar wind stream interfaces, J. Geophys. Res., 83, 1401–1412, 1978.

    ADS  Google Scholar 

  107. Gosling, J.T., G. Borrini, J.R. Asbridge, S.J. Bame, W.C. Feldman, R.T. Hansen, Coronal streamers in the solar wind at 1 AU, J. Geophys. Res., 86, 5438–5448, 1981.

    ADS  Google Scholar 

  108. Griffel, D.H., L. Davis, The anisotropy of the solar wind. Planet. Space Sci., 17, 1009–1020, 1969.

    ADS  Google Scholar 

  109. Gumett, D.A., Plasma waves in the solar wind: A review of observations, in Solar Wind Four, ed. by H. Rosenbauer, Report MPAE-W-100–81-31, Max-Planck-Institut für Aeronomie, Katlenburg-Lindau, F.R.Germany, 286–298, 1981.

    Google Scholar 

  110. Gumett, D.A., Waves and Instabilities, in Physics of the Inner Heliosphere (this volume).

    Google Scholar 

  111. Gumett, D.A., L.A. Frank, Ion-acoustic waves in the solar wind, J. Geophys. Res., 83, 58–74, 1978.

    ADS  Google Scholar 

  112. Gumett, D.A., E. Marsch, W.G. Pilipp, R. Schwenn, H. Rosenbauer, Ion-acoustic waves and related plasma observations in the solar wind, J. Geophys. Res., 84, 2029–2038, 1979.

    ADS  Google Scholar 

  113. Habbal, S.R., E. Leer, Electron heating by Fast-mode magnetohydrodynamic waves in the solar wind emanating from coronal holes, Astrophys. J., 253, 318–322, 1982.

    ADS  Google Scholar 

  114. Hernández, R., E. Marsch, Collisional time scales for temperature and velocity exchange between drifting Maxwellians, J. Geophys. Res., 90, 11062–11066, 1985.

    ADS  Google Scholar 

  115. Hernández, R., S. Livi, E. Marsch, On the He2+ to H+ temperature ratio in slow solar wind, J. Geophys. Res., 92, 7723–7727, 1987.

    ADS  Google Scholar 

  116. Hinton, F.L., Collisional transport in plasma, in Basic Plasma Physics, ed. by A.A. Galeev and R.N. Sudan, North-Holland Publishing Company, Amsterdam, 147–197, 1983.

    Google Scholar 

  117. Hollweg, J.V., Collisionless solar wind. 1. Constant electron temperature, J. Geophys. Res., 75, 2403–2418, 1970.

    ADS  Google Scholar 

  118. Hollweg, J.V., On electron heat conduction in the solar wind, J. Geophys. Res., 79, 3845–3850, 1974.

    ADS  Google Scholar 

  119. Hollweg, J.V., Waves and instabilities in the solar wind. Rev. Geophys. Space Phys., 13, 263–289, 1975.

    ADS  Google Scholar 

  120. Hollweg, J.V., Some physical processes in the solar wind. Rev. Geophys. Space Phys., 16, 689–720, 1978.

    ADS  Google Scholar 

  121. Hollweg, J.V., Helium and heavy ions, in Solar Wind Four, ed. by H. Rosenbauer, Report MPAE-W-100–81-31, Max-Planck-Institut für Aeronmie, Katlenburg-Lindau, F.R.Germany, 414–424, 1981.

    Google Scholar 

  122. Hollweg J.V., Energy and momentum transport by waves in the solar atmosphere, in Proceedings of the 1985 Trieste Summer College on Plasma Physics, ed. by B. Buti, Advances in Space Plasma Physics, World Scientific, Singapore, 77, 1985.

    Google Scholar 

  123. Hollweg, J.V., Transition region, corona, solar wind in coronal holes, J. Geophys. Res., 91, 4111–4125, 1986.

    ADS  Google Scholar 

  124. Holl weg, J.V., W. Johnsen, Transition region, corona, solar wind in coronal holes: some two-fluid models, J. Geophys. Res., 93, 9547–9554, 1988.

    ADS  Google Scholar 

  125. Holzer, T.E., Effects of rapidly diverging flow, heat addition and momentum addition in the solar wind and stellar winds, J. Geophys. Res., 82, 23–35, 1977.

    ADS  Google Scholar 

  126. Holzer, T.E., The solar wind and related astrophysical phenomena, in Solar System Plasma Physics, Vol I, ed. by E.N. Parker, C.F. Kennel, L.J. Lanzerotti, 101–176, North-Holland, Amsterdam, 1979.

    Google Scholar 

  127. Holzer, T.E., E. Leer, Conductive solar wind models in rapidly diverging flow geometries, J. Geophys. Res., 85, 4665–4679, 1980.

    ADS  Google Scholar 

  128. Holzer, T.E., T. Flå, E. Leer, Alfvén waves in stellar winds, Astrophys. J., 275, 808–835, 1983.

    ADS  Google Scholar 

  129. Holzer, E.T., E. Leer, Xue-Pu Zhao, Viscosity in the solar wind, J. Geophys. Res., 91, 4126- 4132, 1986.

    ADS  Google Scholar 

  130. Hundhausen, A.J., Composition and dynamics of the solar wind plasma. Rev. Geophys. Space Phys., 8, 729–811, 1970.

    ADS  Google Scholar 

  131. Hundhausen, A.J., Coronal Expansion and Solar Wind, Springer-Verlag, New York, Berlin, Heidelberg, 1972.

    Google Scholar 

  132. Hundhausen, AJ., Solar wind stream interactions and interplanetary heat conduction, J. Geophys. Res., 78, 7996–8010, 1973.

    ADS  Google Scholar 

  133. Hundhausen, A.J., An interplanetary view of coronal holes, in Coronal Holes and High Speed Streams, ed. by J.B. Zirker, Colorado Associated University Press, Boulder, Colorado, USA, 223–329, 1977.

    Google Scholar 

  134. Hundhausen, A.J., Solar activity and the solar wind. Rev. Geophys. Space Phys., 17, 2034–2048, 1979.

    ADS  Google Scholar 

  135. Hundhausen, A.J., S.J. Bame, N.F. Ness, Solar wind thermal anisotropics: Vela 3 and IMP 3, J. Geophys. Res., 72, 5265–5274, 1967.

    ADS  Google Scholar 

  136. Hundhausen, A.J., M.D. Montgomery, Heat conduction and nonsteady phenomena in the solar wind, J. Geophys. Res., 76, 2236–2244, 1971.

    ADS  Google Scholar 

  137. Ipavich, F.M., A.B. Calvin, G. Gloeckler, D. Hovestadt, S.J. Bame, B. Klecker, M. Scholer, L.A. Fisk, C.Y. Fan, Solar wind Fe and CNO measurements in high-speed flows, J. Geophys. Res., 91, 4133–4141, 1986.

    ADS  Google Scholar 

  138. Isenberg, P.A., Acceleration of heavy ions in the solar wind, in Solar Wind Five, ed. by M. Neugebauer, NASA Conference Publication 2280, Washington, USA, 655–661, 1983.

    Google Scholar 

  139. Isenberg, P.A., The ion-cyclotron dispersion relation in a proton-alpha solar wind, J. Geophys. Res., 89, 2133–2141, 1984.

    ADS  Google Scholar 

  140. Isenberg, P.A., J.V. Hollweg, Finite amplitude Alfvén waves in a multi-ion plasma: Propagation, acceleration, heating, J. Geophys. Res., 87, 5023–5029, 1982.

    ADS  Google Scholar 

  141. Isenberg, P.A., J.V. Hollweg, On the preferential acceleration and heating of solar wind heavy ions, J. Geophys. Res., 88, 3923–3935, 1983.

    ADS  Google Scholar 

  142. Jacques, S.A., Momentum and energy transport by waves in the solar atmosphere and solar wind, Astrophys. J., 215, 942–951, 1977.

    ADS  Google Scholar 

  143. Jacques, S.A., Solar wind models with Alfvén waves, Astrophys. J., 226, 632–649, 1978.

    ADS  Google Scholar 

  144. Jockers, K., Solar wind models based on exospheric theory, Astron. Astrophys., 6, 219–239, 1970.

    ADS  Google Scholar 

  145. Kayser, S.E., A. Barnes, J.D. Mihalov, The far reaches of the solar wind: Pioneer 16 má Pioneer 11 plasma results, Astrophys. J., 285, 339–346, 1984.

    ADS  Google Scholar 

  146. Kennel, C.F., F.L. Scarf, F.V. Coroniti, R.W. Fredericks, D.A. Gumett, E.J. Smith, Correlated whistler and electron plasma oscillation bursts detected on ISEE 3, Geophys. Res. Lett.,7, 129–132, 1980.

    ADS  Google Scholar 

  147. Kennel, C.F., F.L. Scarf, F.V. Coroniti, EJ. Smith. D.A. Gumett, Nonlocal plasma turbulence associated with interplanetary shocks, J. Geophys. Res., 87, 17–34, 1982.

    ADS  Google Scholar 

  148. Klein, L.W., L.F. Burlaga, Interplanetary magnetic clouds at 1 AU, J. Geophys. Res., 87, 613–624, 1982.

    ADS  Google Scholar 

  149. Klein, L.W., K.W. Ogilvie, L.F. Burlaga, Coulomb collisions in the solar wind, J. Geophys. Res., 90, 7389–7395, 1985.

    ADS  Google Scholar 

  150. Kopp, R.A., T.E. Holzer, Dynamics of coronal hole regions, I. Steady polytropic flows with multiple critical points. Solar Phys., 49 43–56. 1976.

    ADS  Google Scholar 

  151. Kopp, R.A., F.Q. Orrall. Models of coronal holes above the transition region, in Coronal Holes and High Speed Streams, ed. by J.B. Zirker. Colorado Associated University Press, Boulder, Colorado, USA, 179–224, 1977.

    Google Scholar 

  152. Kuperus, M., Heating processes of the solar corona, in Plasma Astrophysics, ed. by T.D. Guyenne and G. Levy. ESA-SP 161, Noordwijk, Netherlands. 113–128. 1981.

    Google Scholar 

  153. Kraichnan, R.H., Inertial-range spectrum of hydromagnetic turbulence, Phys. Fluids 8, 1385- 1387, 1965.

    MathSciNet  ADS  Google Scholar 

  154. Lakhma, G.S., Regulation of solar wind heat flux by ordinary mode instabsility. Solar Phys., 52. 153–162. 1977.

    ADS  Google Scholar 

  155. Lakhina, G.S.. Ion cyclotron instability in the solar wind. Solar Phys., 57, 467–473. 1978.

    ADS  Google Scholar 

  156. Lakhina, G.S., B. Buti, Stability of solar wind double ion streams, J. Geophys. Res., 81. 2135–2139, 1976.

    ADS  Google Scholar 

  157. Lee, M.A., I. Lerche, Waves and irregularities in the solar wind. Rev. Geophys. Space Phys., 12, 671–687, 1974.

    ADS  Google Scholar 

  158. Leer, E., W.I. Axford, A two fluid model with anisotropic proton temperature. Solar Phys., 23, 238–250, 1972.

    ADS  Google Scholar 

  159. Leer, E., T.E. Holzer. Collisionless solar wind protons: A comparison of kinetic and hydro- dynamic descriptions, J. Geophys. Res., 77. 4035–4041. 1972.

    ADS  Google Scholar 

  160. Leer, E.. T.E. Holzer, Constraints on the solar coronal temperature in regions of open magnetic field. Solar Phys., 63, 143–156, 1979.

    ADS  Google Scholar 

  161. Leer, E., T.E. Holzer, Energy addition to the solar wind, J. Geophys. Res., 85, 4681–4688, 1980.

    ADS  Google Scholar 

  162. Leer, E., T£. Holzer, T. Flå, Acceleration of the solar wind. Space Sci. Rev., 33, 161–200, 1982.

    ADS  Google Scholar 

  163. Lemaire, J., M. Scherer, Kinetic models of the solar wind, J. Geophys. Res., 76, 7479–7490, 1971.

    ADS  Google Scholar 

  164. Lemaire, J., M. Scherer, Kinetic models of the solar and polar wind. Rev. Geophys. Space Phys., 11, 427–468, 1972.

    ADS  Google Scholar 

  165. Lemons, D.S., S.P. Gary, Temperature anisotropy instability in a plasma of two ion components, J. Plasma Phys, 15, 83–89, 1976.

    ADS  Google Scholar 

  166. Lemons, D.S., W.C. Feldman, Collisional modification to the exospheric theory of solar wind halo electron pitch angle distributions, J. Geophys. Res., 88, 6881–6687, 1983.

    ADS  Google Scholar 

  167. Leubner, M.P., Influence of non-bi-Maxwellian distribution function of solar wind protons on the ion cyclotron instability, J. Geophys. Res., 83, 3900–3902, 1978.

    ADS  Google Scholar 

  168. Leubner, M.P., Velocity distribution function and cyclotron wave growth in a modified bi- Maxwellian two-ion-component solar wind plasma, J. Geophys. Res., 84, 2661–2665, 1979.

    ADS  Google Scholar 

  169. Leubner, M.P., A.F. Viñas, Stability analysis of double peaked proton distribution functions in the solar wind, J. Geophys. Res., 91, 13366–13372, 1986.

    ADS  Google Scholar 

  170. Livi, S., E. Marsch, On the collisional relaxation of solar wind velocity distributions, Ann. Geophys., 4A, 333–340, 1986.

    ADS  Google Scholar 

  171. Livi, S., E. Marsch, H. Rosenbauer, Coulomb collisional domains in the solar wind, J. Geophys., 91, 8045–8050, 1986.

    ADS  Google Scholar 

  172. Livi, S., E. Marsch, Comparison of the Bhatnagar-Gross-Krook-approximation with the exact Coulomb collision operator, Phys. Rev. A, 34, 533–540, 1986.

    ADS  Google Scholar 

  173. Livi, S., E. Marsch, Generation of solar wind proton tails and double beams by Coulomb collisions, J. Geophys. Res., 92, 7255–7261, 1987.

    ADS  Google Scholar 

  174. Lomonosov, V.N., The heating of solar-wind protons by Alfvén waves in the inner heliosphere, Geomagnetism and Aeronomy, 27, 313–316, 1987.

    Google Scholar 

  175. Lopez, R.E., J.W. Freeman, Solar wind proton temperature-velocity relationship, J. Geophys. Res., 91, 1701–1705, 1986.

    ADS  Google Scholar 

  176. Mariani, F., F.M. Neubauer, The interplanetary magnetic field.Physics of the Inner Heliosphere, Vol 1, ed. by R. Schwenn and E. Marsch, Springer-Verlag, Berlin, Heidelberg, New York, 183–206, 1990.

    Google Scholar 

  177. Marsch, E., Velocity distributions of solar wind ions and electrons, in Proceedings of a Course & Workshop on Plasma Astrophysics, Varenna, Italy, 28 Aug-7 Sept 1984, ESA SP-207, 33–40, 1984.

    Google Scholar 

  178. Marsch, E., Energy input into the solar wind, in Proceedings of an ES A workshop on “Future missions in solar, heliospheric and space plasma physics”, ESA SP-235, 11–21, 1985.

    Google Scholar 

  179. Marsch, E., Beam-driven electron acoustic waves upstream of the earth’s bow shock, J. Geophys. Res., 90, 6327–6336, 1985.

    ADS  Google Scholar 

  180. Marsch, E., Acceleration potential and angular momentum of undamped MHD waves in stellar winds, Astron. Astrophys., 164 77–85, 1986.

    ADS  MATH  Google Scholar 

  181. Marsch, E., Wave-particle interactions in the solar wind, in Proceedings of the workshop on “Nonlinear phenomena in Vlasov plasmas”, ed. by F. Doveil, l’lnstitut d’Etudes Scientifiques de Cargèse, Corsica, France, 145–162, 1988.

    Google Scholar 

  182. Marsch, E., MHD turbulence in the solar wind, in Physics of the Inner Heliosphere, (this volume).

    Google Scholar 

  183. Marsch, E., K.-H. Mühlhäuser, W.G. Pilipp, R. Schwenn, H. Rosenbauer, Liitial results on solar wind alpha particle distributions as measured by Helios between 0.3 and 1 AU, in Solar Wind Four, ed. by H. Rosenbauer, Report MPAE-W-100–81-31, Max-Planck-Institut für Aeronomie, Katlenburg-Lindau, F.R.Germany, 443–449, 1981.

    Google Scholar 

  184. Marsch, E., K.-H. Mühlhäuser, H. Rosenbauer, R. Schwenn, K.U. Denskat, Pronounced proton core temperature anisotropy, ion differential speed, and simultaneous Alfvén wave activity in slow solar wind at 0.3 AU, J. Geophys. Res., 86, 9199–9203, 1981.

    ADS  Google Scholar 

  185. Marsch, E., K.-H. Mühlhäuser, H. Rosenbauer, R. Schwenn, FM. Neubauer, Solar wind helium ions: Observations of the Helios solar probes between 0.3 and 1 AU, J. Geophys. Res., 87, 35–51, 1982.

    ADS  Google Scholar 

  186. Marsch, E., K.-H. Mühlhäuser, R. Schwenn, H. Rosenbauer, W.G. Pilipp, F.M. Neubauer, Solar wind protons: Three-dimensional velocity distributions and derived plasma parameters measured between 0.3 and 1 AU, J. Geophys. Res., 87, 52–72, 1982.

    ADS  Google Scholar 

  187. Marsch, E., T. Chang, Lower hybrid waves in the solar wind, Geophys. Res. Lett., 9, 1155- 1158, 1982.

    ADS  Google Scholar 

  188. Marsch, E., C.K. Goertz, K. Richter, Wave heating and acceleration of solar wind ions by cyclotron resonance, J. Geophys. Res., 87, 5030–5044, 1982.

    ADS  Google Scholar 

  189. Marsch, E., T. Chang, Electromagnetic lower hybrid waves in the solar wind, J. Geophys. Res., 88, 6869–6880, 1983.

    ADS  Google Scholar 

  190. Marsch, E., K.-H. Mühlhäuser, H. Rosenbauer, R. Schwenn, On the equation of state of solar wind ions derived from Helios measurements, J. Geophys. Res., 88, 2982–2992, 1983.

    ADS  Google Scholar 

  191. Marsch E., H. Goldstein, The effects of Coulomb collisions on solar wind ion velocity distributions, J. Geophys. Res., 88, 9933–9940, 1983.

    ADS  Google Scholar 

  192. Marsch, E., A.K. Richter, Distribution of solar wind angular momentum between particles and magnetic field: Inferences about the Alfvén critical point from Helios observations, J. Geophys. Res., 89, 5386–5394, 1984.

    ADS  Google Scholar 

  193. Marsch, E., A.K. Richter, Helios observational constraints on solar wind expansion, J. Geophys. Res., 89, 6599–6612, 1984.

    ADS  Google Scholar 

  194. Marsch, E., S. Livi, Coulomb collision rates for the self-similar and kappa distributions, Phys. Fluids, 28, 1379–1386, 1985.

    ADS  MATH  Google Scholar 

  195. Marsch, E., S. Livi, Coulomb self-collision frequencies for nonthermal velocity distributions in the solar wind, Annales Geophysicae, 3, 545–556, 1985.

    ADS  Google Scholar 

  196. Marsch, E., A.K. Richter, On the equation of state and collision time for a multicomponent, anisotropic solar wind, Ann. Geophys., 5A, 71–82, 1987.

    ADS  Google Scholar 

  197. Marsch, E., S. Livi, Observational evidence for marginal stability of solar wind ion beams, J. Geophys. Res., 92, 7263–7268, 1987.

    ADS  Google Scholar 

  198. Marsch, E., W.G. Pilipp, K.M. Thieme, H. Rosenbauer, Cooling of solar wind electron inside 0.3 AU, J. Geophys. Res., 94, 6893–6898, 1989.

    ADS  Google Scholar 

  199. Marsden, R.G., K.P. Wenzel, The international solar polar mission (ISPM), in Plasma Astrophysics, ed. by T.D. Guyenne and G. Levy, ESA-SP 161, XXX Noordwijk, Netherlands, 167–175, 1981.

    Google Scholar 

  200. Matthaeus, WU., M.L. Goldstein, Magnetohydrodynamic turbulence in the solar wind, in Solar Wind Five, ed. by M. Neugebauer, NASA Conference Publication 2280, Washington, USA, 73–80, 1983.

    Google Scholar 

  201. McKenzie, J.F., W.H. Ip, W.L Axford, The acceleration of minor ion species in the solar wind, Astrophys. Space Sci., 64, 183–211, 1979.

    ADS  Google Scholar 

  202. McKenzie, J.F., E. Marsch, Resonant wave acceleration of minor ions in the solar wind, Astrophys. Space Sci., 81, 295–314, 1982.

    ADS  MATH  Google Scholar 

  203. Melrose, D.B., Instabilities in Space and Laboratory Plasmas, Cambridge University Press, Cambridge, 1986.

    Google Scholar 

  204. Mihalov, J.D., J.H. Wolfe, Pioneer-10 observation of the solar wind proton temperature heliocentric gradient. Solar Phys. 60, 399–406, 1978.

    ADS  Google Scholar 

  205. Mitchell, D.G., E.C. Roelof, W.C. Feldman, SJ. Bame, DJ. Williams, Thermal iron ions m high-speed solar wind streams, 2. Temperatures and bulk velocities, Geophys, Res. Lett., 8, 827–830, 1981.

    ADS  Google Scholar 

  206. Montgomery, D.M., Theory of hydromagnetic turbulence, in Solar Wind Five, ed. by M. Neugebauer, NASA Conference Publication 2280, Washington, USA, 107–130, 1983.

    Google Scholar 

  207. Montgomery, D., M.R. Brown, W.H. Matthaeus, J. Geophys, Res., 92, 282–284, 1987.

    ADS  Google Scholar 

  208. Montgomery, M.D., S J. Bame, AJ. Hundhausen, Solar wind electrons: Vela 4 measurements, J. Geophys. Res., 73, 4999–5003, 1968.

    ADS  Google Scholar 

  209. Montgomery, M.D., S.P. Gary, D.W. Forslund, W.C. Feldman, Electromagnetic ion-beam instabilities in the solar wind, Phys. Rev. Lett., 35, 667–670, 1975.

    ADS  Google Scholar 

  210. Montgomery, M.D., S.P. Gary, W.C. Feldman, D.W. Forslund, Electromagnetic instabilities driven by unequal proton beams in the solar wind, J. Geophys. Res., 81, 2743–2749, 1976.

    ADS  Google Scholar 

  211. Munro, R.H., B.V. Jackson, Physical properties of a coronal hole from 2 to 5 R , Astrophys. J., 213, 874–886, 1977.

    ADS  Google Scholar 

  212. Neubauer, F.M., G. Musmarm, G. Dehmel, Fast magnetic fluctuations in the solar wind: Helios 1, J. Geophys. Res., 82, 3201–3212, 1977.

    ADS  Google Scholar 

  213. Neugebauer, M., The quiet solar wind, J. Geophys. Res., 81, 4664–4670, 1976.

    ADS  Google Scholar 

  214. Neugebauer, M., The role of Coulomb collisions in limiting differential flow and temperature differences in the solar wind, J. Geophys. Res., 81, 78–82, 1976.

    ADS  Google Scholar 

  215. Neugebauer, M., Observations of solar wind helium, Fundam. Cosmic Phys., 7, 131–199, 1981.

    ADS  Google Scholar 

  216. Neugebauer, M., C.W. Wu, J.D. Huba, Plasma fluctuations in the solar wind, J. Geophys. Res., 83, 1027–1033, 1978.

    ADS  Google Scholar 

  217. Neugebauer, M., W.C. Feldman, Relation between superheating and superacceleration of helium in the solar wind. Solar Phys., 63, 201–205, 1979.

    ADS  Google Scholar 

  218. Neupert, W.M., V. Pizzo, Solar coronal holes as sources of recurrent geomagnetic disturbances, J. Geophys. Res., 79, 3701–3709, 1974.

    ADS  Google Scholar 

  219. Ogilvie, K.W., J.D. Scudder, The radial gradient and collisionless properties of solar wind electrons, J. Geophys. Res., 83, 3776–3782, 1978.

    ADS  Google Scholar 

  220. Ogilvie, K.W., P. Bochsler, M.A. Coplan, J. Geiss, Observations of the velocity distribution of solar wind ions, J. Geophys. Res., 85, 6069–6074, 1980.

    ADS  Google Scholar 

  221. Olbert, S., Inferences about the solar wind dynamics from observed distributions of electrons and ions, in Proceedings of an International School and Workshop on Plasma Astropshysics, Varenna, Como, Italy, Eur. Space Agency Spec. Publ., ESA SP-161, 135–144, 1981.

    Google Scholar 

  222. Olbert, S., The role of thermal conduction in the acceleration of the solar wind, in Solar Wind Five, ed. by M. Neugebauer, NASA Conference Publication 2280, Washington, USA, 149–162, 1983.

    Google Scholar 

  223. Owocki, S.P., J.D. Scudder, The effect of a non-Maxwellian electron distribution on oxygen and iron ionization balances in the solar corona, Astrophys. J., 270, 758–768, 1983.

    ADS  Google Scholar 

  224. Owocki, S.P., R.C. Canfield, The role of nonclassical electron transport in the lower solar transition region, Astrophys. J., 300, 420–427, 1986.

    ADS  Google Scholar 

  225. Papadopoulus, K., Electrostatic turbulence at colliding plasma streams as the source of ion heating in the solar wind, Astrophys. J., 179, 931–938, 1973.

    ADS  Google Scholar 

  226. Parker, E.N., Dynamics of the interplanetary gas and magnetic fields, Astrophys. J., 128, 664–684, 1958.

    ADS  Google Scholar 

  227. Parker, E.N., Dynamical instability of an anisotropic gas of low density, Phys. Rev., 109, 1874–1876, 1958.

    ADS  MATH  Google Scholar 

  228. Parker, E.N., Interplanetary Dynamical Processes, Interscience, New York, 1963.

    MATH  Google Scholar 

  229. Parker, E.N., Dynamical theory of the solar wind. Space Sci. Rev., 4, 666–708, 1965.

    ADS  Google Scholar 

  230. Pilipp, W.G., R. Schwenn, E. Marsch, K.-H. Mühlhäuser, H. Rosenbauer, Electron characteristics in the solar wind as deduced from Helios observations in Solar Wind Four, ed. by H. Rosenbauer, Report MPAE-W-100–81-31, Max-Planck-Institut für Aeronomie, Katlenburg- Lindau, F.R. Germany, 241–249, 1981.

    Google Scholar 

  231. Pilipp, W.G., Solar wind electrons as a probe for the global structure of the interplanetary magnetic field, in Topics in Plasma-, Astro-, and Space Physics, ed. by G. Haerendel and B. Battrick, Max-Planck-Institut für Physik und Astrophysik, Institut für Extraterrestrische Physik, Garching bei München, F.R.Germany, 91–107, 1983.

    Google Scholar 

  232. Pilipp, W.G., H. Miggenrieder, K.-H. Mühlhäuser, H. Rosenbauer, R. Schwenn, F.M. Neubauer, Variations of electron distribution functions in the solar wind, J. Geophys. Res., 92, 1103–1118, 1987.

    ADS  Google Scholar 

  233. Pilipp, W.G., H. Miggenrieder, M.D. Montgomery, K.-H. Mühlhäuser, H. Rosenbauer, R. Schwenn, Characteristics of electron velocity distribution functions in the solar wind derived from the Helios plasma experiment, J. Geophys. Res., 92, 1075–1092, 1987.

    ADS  Google Scholar 

  234. Pilipp, W.G., H. Miggenrieder, M.D. Montgomery, K.-H. Mühlhäuser, H. Rosenbauer, R. Schwenn, Unusual electron distribution functions in the solar wind derived from the Helios plasma experiment: Double-strahl distributions and distributions with an extremely anisotropic core, J. Geophys. Res., 92, 1093–1101, 1987.

    ADS  Google Scholar 

  235. Pilipp, W.G., H. Miggenrieder, K.H. Mühlhäuser, H. Rosenbauer, R. Schwenn, Large scale variations of thermal electron parameters in the solar wind, J. Geophys. Res., in press, 1988.

    Google Scholar 

  236. Pizzo, VJ., Quasi-steady solar wind dynamics, in Solar Wind Five, ed. by M. Neugebauer, NASA Conference Publication 2280, Washington, USA, 675–691, 1983.

    Google Scholar 

  237. Pizzo, v., R. Schwenn, E. Marsch, H. Rosenbauer, K.H. Mühlhäuser, F.M. Neubauer, Determination of the solar wind angular momentum flux from Helios data-An observational test of the Weber and Davis theory, Astrophys. J., 271, 335–354, 1983.

    ADS  Google Scholar 

  238. Priest, E.R., Solar Magnetohydrodynamics, D. Reidel Publishing Company, Dordrecht, The Netherlands, 1982.

    Google Scholar 

  239. Randolph, J.E., Solar probe study, in A Close Up of the Sun, ed. by M. Neugebauer and R.W. Davies, JPL Publication 78–70, Jet Propulsion Laboratory, Pasadena, California, USA, 521–534, 1978.

    Google Scholar 

  240. Richter, A.K., K.C. Hsieh, A.H. Luttrell, E. Marsch, R. Schwenn, Review of interplanetary shock phenomena near and within 1 AU, in Collisionless Shocks in the Heliosphere: Reviews of Current Research, ed. by B.T. Tsurutani and R.G. Stone, Geophysical Monograph, 35, 33–50, 1985.

    Google Scholar 

  241. Rosenbauer, H., R. Schwenn, E. Marsch, B. Meyer, H. Miggenrider, M.D. Montgomery, K.-H. Mühlhäuser, W.G. Pilipp, W. Voges, S.M. Zink, A survey of initial results of the Helios plasma experiment, J. Geophys., 42, 561–580, 1977.

    Google Scholar 

  242. Rossi, P.B., S. Olbert, Introduction to the Physics of Space, McGraw-Hill, New York, 1970.

    Google Scholar 

  243. Rottman, GJ., F.Q. Orrall, Observational evidence for solar wind acceleration at the base of coronal holes, in Solar Wind Five, ed. by M. Neugebauer, NASA Conference Publication 2280, Washington, USA, 199–210, 1983.

    Google Scholar 

  244. Scarf, F.L., Microscopic structure of the solar wind. Space Sci. Rev., 11, 234–270, 1970.

    Google Scholar 

  245. Scarf, F.L., D.A. Gumett, W.S. Kurth, The first year of Voyager plasma wave observations in the solar wind, in Solar Wind Four, ed. by H. Rosenbauer, Report MPAE-W-100–81-31, Max-Planck-Institut für Aeronomie, Katlenburg-Lindau, F.R.Germany, 305–316, 1981.

    Google Scholar 

  246. Scarf, F.L.., J.H. Wolfe, R.W. Silva, A plasma instability associated with thermal anisotropies m the solar wind, J. Geophys. Res., 72, 993–1005, 1967.

    ADS  Google Scholar 

  247. Schmidt, J., P. Bochsler, J. Geiss, Velocity of iron ions in the solar wind, J. Geophys. Res., 92, 9901–9906, 1987.

    ADS  Google Scholar 

  248. Schmidt, W.K.H., H. Rosenbauer, E.G. Shelley, J. Geiss, On temperature and speed of He2+ and O6+ ions in the solar wind, Geophys. Res. Lett., 7, 697–700, 1980.

    ADS  Google Scholar 

  249. Schwartz, SJ., Microturbulence of the solar wind, 1. Analytical results for fast mode instability growth rates, J. Geophys. Res., 83, 3745–3752, 1978.

    ADS  Google Scholar 

  250. Schwartz, S.J., Plasma instabilities in the solar wind: A theoretical review. Rev. Geophys. Space Phys., 18, 313–336, 1980.

    ADS  Google Scholar 

  251. Schwartz, S.J., W.C. Feldman, S.P. Gary, The source of proton anisotropy in the high-speed solar wind, J. Geophys. Res., 86, 541–546, 1981.

    ADS  Google Scholar 

  252. Schwartz, S.J., W.C. Feldman, S.P. Gary, Wave-electron interactions in the high speed solar wind, J. Geophys. Res., 86, 4574–4578, 1981.

    ADS  Google Scholar 

  253. Schwartz, S.J., E. Marsch, The radial evolution of a single solar wind plasma parcel, J. Geophys. Res., 88, 9919–9932, 1983.

    ADS  Google Scholar 

  254. Schwenn, R., The “average” solar wind in the inner heliosphere: Structures and slow variations, in Solar Wind Five, ed. by M. Neugebauer, NASA Conference Publication 2280, Washington, USA, 489–508, 1983.

    Google Scholar 

  255. Schwenn, R., Direct correlations between coronal transients and interplanetary disturbances. Space Sci. Rev., 34, 85–99, 1983.

    ADS  Google Scholar 

  256. Schwenn, R., Relationship of coronal transients to interplanetary shocks: 3-D aspects. Space Sci. Rev., 44, 139–168, 1986.

    Google Scholar 

  257. Schwenn, R., Large scale structure of the interplanetary medium, in Physics of the inner Heliosphere, Vol 1, ed. by R. Schwenn and E. Marsch, Springer-Verlag, Beriin, Heidelberg, New York, 99–181, 1990.

    Google Scholar 

  258. Schwenn, R., M.D. Montgomery, H. Rosenbauer, H. Miggenrieder, K.H. Mühlhäuser, S J. Bame, W.C. Feldman, R.T. Hansen, Direct observations of the latitudinal extent of a high speed stream in the solar wind, J. Geophys. Res., 83, 1011–1018, 1978.

    ADS  Google Scholar 

  259. Schwenn, R., K.-H. Mühlhäuser, E. Marsch, and H. Rosenbauer, Two states of the solar wind at the time of solar activity minimum, 11, Radial gradients of plasma parameters in fast and slow streams, in Solar Wind Four, ed. by H. Rosenbauer, Report MPAE-W-100–81-31, Max-Planck-Institut für Aeronomie, Katlenburg-Lindau, F.R.Germany, 126–130, 1981.

    Google Scholar 

  260. Scudder, J.D., S. Olbert, A theory of local and global processes which affect solar wind electrons, 1. The origin of typical 1 AU velocity distribution functions - Steady state theory, J. Geophys. Res., 84, 2755–2772, 1979.

    ADS  Google Scholar 

  261. Scudder, J.D., S. Olbert, A theory of local and global processes which affect solar wind electrons, 2. Experimental support, J. Geophys. Res.84, 6603–6620, 1979.

    ADS  Google Scholar 

  262. Sheeley, N.R., J.W. Harvey, W.C. Feldman, Coronal holes, solar wind streams, recurrent geomagnetic disturbances: 1973–1976, Solar Phys., 49, 271–278, 1976.

    ADS  Google Scholar 

  263. Sheeley, N.R., Jr., R.A. Howard, M.J. Koomen, D.J. Michels, R. Schwenn, K.H. Mühlhäuser, H. Rosenbauer, Association between coronal mass ejections and interplanetary shocks, in Solar Wind Five, ed. by M. Neugebauer, NASA Conference Publication 2280, Washington, USA, 693–702, 1983.

    Google Scholar 

  264. Sheeley, N.R., R.A. Howard, M.J. Koomen, D.J. Michels, K.L. Harvey, J.W. Harvey, Observations of coronal structure during sunspot maximum. Space Sci. Rev., 33, 219–231, 1983.

    ADS  Google Scholar 

  265. Shoub, E.C., Invalidity of local thermodynamic equilibrium for electrons in the solar transition region. I. Fokker-Planck results, Astrophys. J., 266, 339–369, 1983.

    ADS  Google Scholar 

  266. Shoub, E.C., Failure of the Fokker-Planck approximation to the Boltzmann integral for 1/r potentials, Phys. Fluids, 30, 1340–1352, 1987.

    ADS  MATH  Google Scholar 

  267. Singer, C.E., I.W. Roxburgh, The onset of microinstabilities and its consequences in the solar wind, J. Geophys. Res., 82, 2677–2685, 1977.

    ADS  Google Scholar 

  268. Sittler, E.C., Jr., J.D. Scudder, An empirical polytrope law for solar wind thermal electrons between 0.45 and 4.76 AU: Voyager 2 and Mariner 10, J. Geophys. Res., 85, 5131–5137, 1980.

    ADS  Google Scholar 

  269. Smith, E.J., Observations of interplanetary shocks: Recent progress. Space Sci. Rev., 34, 101–110, 1984.

    ADS  Google Scholar 

  270. Spitzer, L., Physics of Fully Ionized Gases, Interscience Publ., New York, 1962.

    Google Scholar 

  271. Thieme, K.M., E. Marsch, H. Rosenbauer, Estimates of alpha particle heating in the solar wind inside 0.3 AU, J. Geophys. Res., 94, 2673–2676, 1988.

    ADS  Google Scholar 

  272. Thieme, K.M., R. Schwenn, E. Marsch, Are structures in high-speed streams signatures of coronal fine structures?. Advances in Space Research, 9, (4), 127–130, 1989.

    ADS  Google Scholar 

  273. Tu, C.-Y., A solar wind model with the power spectrum of Alfvénic fluctuations. Solar Phys., 109, 149–186, 1987.

    ADS  Google Scholar 

  274. Tu, C.-Y., The damping of interplanetary Alfvénic fluctuations and the heating of the solar wind, J. Geophys. Res., 93, 7–20, 1988.

    ADS  Google Scholar 

  275. Tu, C.-Y., Z.-Y. Pu, F.-S. Wei, The power spectrum of interplanetary Alfvénic fluctuations: Derivation of the governing equation and its solution, J. Geophys. Res., 89, 9695–9702, 1984.

    ADS  Google Scholar 

  276. Tu, C.-Y., L. Dong, Dissipation mechanism of interplanetary Alfvénic fluctuations. Chin. Astron. Astrophys., 9, 60–65, 1985.

    ADS  Google Scholar 

  277. Tu, C.-Y., J.W. Freeman, R.E. Lopez, The proton temperature and the total hourly variance of the magnetic field components in different solar wind speed regions. Solar Phys., 119, 197–206, 1988.

    ADS  Google Scholar 

  278. Tu, C.-Y., D.A. Roberts, M.L. Goldstein, Determination of the spectral evolution and cascade constant in solar wind Alfvénic turbulence observed cross helocity values, J. Geophys. Res., in print, 1989.

    Google Scholar 

  279. Volk, HJ., Microstructure of the solar wind. Space Sci. Rev., 17, 255–276, 1975.

    ADS  Google Scholar 

  280. Weber, E.J., L. Davis, The angular momentum of the solar wind, Astrophys. J., 148,217–227, 1967.

    ADS  Google Scholar 

  281. Whang, Y.C., Higher moment equations and the distribution fimction of the solar wind plasma, J. Geophys. Res., 76, 7503–7507, 1971.

    ADS  Google Scholar 

  282. Whang, Y.C., T.H. Chien, Magnetohydrodynamic interaction of high-speed streams, J. Geophys. Res., 86, 3263–3272, 1981.

    ADS  Google Scholar 

  283. Winske, D., M.M. Leroy, Diffuse ions produced by electromagnetic ion beam instabilities, J. Geophys. Res., 89, 2673–2688, 1984.

    ADS  Google Scholar 

  284. Winske, D., C.S. Wu, Y.Y. Li, Z.Z. Mou, J.Y. Guo, Coupling of newborn ions to the solar wind by electromagnetic instabilities and their interaction with the bow shock, J. Geophys. Res., 90, 2713–2726, 1985.

    ADS  Google Scholar 

  285. Winske, D., S.P. Gary, Electromagnetic instabilities driven by cool heavy ion beams, J. Geophys. Res., 91, 6825–6832, 1986.

    ADS  Google Scholar 

  286. Withbroe, G.L., The chromospheric and transition layers in coronal holes, in Coronal Holes and High Speed Streams, ed. by J.B. Zirker, Colorado Associated University Press, Boulder, Colorado, USA, 145–177, 1977.

    Google Scholar 

  287. Withbroe, G.L., The temperature structure, mass and energy flow in the corona and inner solar wind, Astrophys. J., 325, 442–467, 1988.

    ADS  Google Scholar 

  288. Withbroe, G.L., J.L. Kohl, H. Weiser, R.H. Munro, Probing the solar wind acceleration region using spectroscopic techniques, Space Sci. Rev., 33, 17–52, 1982.

    ADS  Google Scholar 

  289. Withbroe, G.L., J.C. Raymond, Plasma diagnostics for the outer solar corona: UV and XUV Fe XII lines, Astrophys. J., 285, 347–353, 1984.

    ADS  Google Scholar 

  290. Woo, R., Spacecraft radio scintillation and scattering measurements of the solar wind, in Solar Wind Four, ed. by H. Rosenbauer, Report MPAE-W-100–81-31,  Max-Planck-Institut für Aeronomie, Katlenburg-Lindau, F.R. Germany, 66–77, 1981.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Marsch, E. (1991). Kinetic Physics of the Solar Wind Plasma. In: Schwenn, R., Marsch, E. (eds) Physics of the Inner Heliosphere II. Physics and Chemistry in Space, vol 21. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-75364-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-75364-0_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-75366-4

  • Online ISBN: 978-3-642-75364-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics