Skip to main content

Part of the book series: Physics and Chemistry in Space ((SPACE,volume 21))

Abstract

Ever since the identification of the first interplanetary shock wave from the Mariner 2 plasma and magnetic field measurements [7.38], shock research has received great attention in solar system plasma physics, and this has resulted in an outstanding collaboration between laboratory and space experimentalists, theorists, and specialists in numerical simulation. This type of research, however, has been devoted, at least from an observational point of view, more or less exclusively to the investigation of fast-mode shock waves, whereas the corresponding study of slow-mode shocks has remained in a fairly primitive state. To some extent this is rather surprising, as MHD per se does not predict any major problems in generating slow-mode waves or shocks, in particular not in the solar wind, where, as we will show, ample “perturbations” are present for their generation. Yet, although long-standing records of solar wind measurements ranging from 0.3 AU out to several tens of AU are at our disposal, the number of observations of interplanetary slow-mode MHD turbulence or slow-mode shocks published over the last few years is remarkably small. In fact, there exists only one published example of low-frequency slow-mode MHD turbulence identified in the solar wind [7.31], and the number of published interplanetary slow shocks, regardless of the level of sophistication with respect to their unique identification, can still be counted on the fingers of one hand [7.9,28].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abraham-Shrauner, B., Determination of magnetohydrodynamic shock normals, J. Geophys. Res., 77, 736, 1972.

    Article  ADS  Google Scholar 

  2. Barnes, A., Collisionless damping of hydromagnetic waves, Phys. Fluids, 9, 1483, 1966.

    Article  ADS  Google Scholar 

  3. Barnes, A., J. V. Hollweg, Large-amplitude hydromagnetic waves, J. Geophys. Res., 79, 2302, 1974.

    Article  ADS  Google Scholar 

  4. Boyd, T. J. M., J. J. Sanderson, Plasma Dynamics, Barnes and Noble, New York, 1969.

    MATH  Google Scholar 

  5. Burlaga, L.F.,Hydromagnetic waves and discontinuities in the solar wind, Space Sci. Rev., 12, 600, 1971.

    Article  ADS  Google Scholar 

  6. Burlaga, L.F., Interplanetary stream interfaces, J. Geophys. Res., 79, 3717, 1974.

    Article  ADS  Google Scholar 

  7. Burlaga, L.F., J.-K. Chao, Reverse and forward slow shocks in the solar wind, J. Geophys. Res., 76, 7516, 1971.

    Article  ADS  Google Scholar 

  8. Chao, J.-K., Interplanetary collisonless shock waves. Rep. CSR TR-70–3, Mass. Inst, of Technol. Cent, for Space Res., Cambridge, Mass., 1970.

    Google Scholar 

  9. Chao, J.-K., S. Olbert, Observation of slow shocks in interplanetary space, J. Geophys. Res., 75, 6394, 1970.

    Article  ADS  Google Scholar 

  10. Colbum, D., C.P. Sonett, Discontinuities in the solar wind. Space Sci. Rev., 5, 439, 1966.

    Google Scholar 

  11. Edmiston, J.P., C.F. Kennel, A parametric study of slow shock: Rankine-Hugoniot solutions and critical Mach numbers. J. Geophys. Res., 91, 1361, 1986.

    Article  ADS  Google Scholar 

  12. Feldman, W.C., S.J. Schwartz, S J. Bame, D.N. Baker, J. Bim, J.T. Gosling, E.W. Hones Jr., DJ. McComas, J.A. Slavin, EJ. Smith, R.D. Zwickl, Evidence for slow-mode shocks in the deep geomagnetic tail, Geophys. Res. Lett., 11, 599, 1984.

    Article  ADS  Google Scholar 

  13. Feldman, W.C., R.L. Tokar, J. Bim, E.W. Hones Jr., SJ. Bame, C.T. Russell, Structure of a slow-mode shock observed in the plasma sheet boundary layer, J. Geophys. Res., 92, 83, 1987.

    Article  ADS  Google Scholar 

  14. Gosling, J.T., E. Hildner, R.M. McQueen, R.H. Munro, A.L Poland, C.L. Ross, Direct observations of a flare related coronal and solar wind disturbance. Solar Phys., 40, 439, 1975.

    Article  ADS  Google Scholar 

  15. Hada, T., C.F. Kennel, Nonlinear evolution of slow waves in the solar wind, J. Geophys. Res., 90, 531, 1985.

    Article  ADS  Google Scholar 

  16. Hsieh, K.C., A.K. Richter, Generalized technique to estimate shock parameters from single- spacecraft observations. Rep. MPAE-W-79–84-44, Max-Planck-Institut für Aeronomie, Katlenburg-Lindau, Federal Republic of Germany, 1984.

    Google Scholar 

  17. Hsieh, K.C., A.K. Richter, The importance of being earnest about shock fitting, J. Geophys. Res., 91, 4157, 1986.

    Article  ADS  Google Scholar 

  18. Hundhausen, A J.,Coronal Expansion and Solar Wind, Springer-Vertag, New York, Berlin, Heidelberg, 1972.

    Book  Google Scholar 

  19. Hundhausen, A J., T.E. Holzer, B.C. Low, Do slow shocks precede some coronal mass ejections?, J. Geophys. Res., 92, 11173, 1987.

    Google Scholar 

  20. Jeffrey, A., T. Tanuiti, Non-linear Wave Propagation, Academic Press, New York, 1964.

    MATH  Google Scholar 

  21. Johnstone, A., K. Glassmeier, M. Acuña, H. Borg, D. Bryant, A. Coates, V. Formisano, J. Heath, F. Mariani, G. Musmann, F. Neubauer, M. Thomsen, B. Wilken, J. Wmningham, Waves in the magnetic field and solar wind flow outside the bow shock of Comet P/Halley, Astron. Astrophys., 187, 47, 1987.

    ADS  Google Scholar 

  22. Kantrowitz, A., H.E. Petschek, MHD characteristics and shock waves, in Plasma Physics in Theory and Application, ed.by W.B. Kunkel, McGraw-Hill, New York, 1966.

    Google Scholar 

  23. Leppmg, R.P., P.D. Argentiero, Single-spacecraft method of estimating shock normals, J. Geophys. Res., 76, 4349, 1971.

    Article  ADS  Google Scholar 

  24. Neubauer, F.M., Nonlinear interaction of discontinuities in the solar wind and the origm of slow shocks, J. Geophys. Res., 81, 2248, 1976.

    Article  ADS  Google Scholar 

  25. Petschek, H.E., Magnetic field annihilation, AAS-NASA Symposium on the Physics of Solar Flares, NASA Spec. Puhl., SP-50, 425, 1964.

    ADS  Google Scholar 

  26. Fillip, W.C., H. Miegenrieder, M.D. Montgomery, K.-H. Mühlhäuser, H. Rosenbauer, R. Schwenn, Characteristics of electron velocity distribution functions in the solar wind derived from the Helios plasma experiment, J. Geophys. Res., 92, 1075, 1987.

    Article  ADS  Google Scholar 

  27. Richter A.K., K.C. Hsieh, A.H. Luttrell, E. Marsch, R. Schwenn, Review of interplanetary shock phenomena near and within IAU, paper presented at Chapman Conference on Colli- sionless Shock Waves in the Heliosphere, AGU, Napa Valley, Calif., 1984.

    Google Scholar 

  28. Richter, A.K., H. Rosenbauer, F.M. Neubauer, N.G. Ptitsyna, Solar wind observations associated with a slow forward shock wave at 0.31 AU, J. Geophys. Res., 90, 7581, 1985.

    Article  ADS  Google Scholar 

  29. Richter, A.K., K.C. Hsieh, H. Rosenbauer, F.M. Neubauer, Parallel fast-forward shock waves within 1 AU: Helios-1 ánd -2 observations, Annales Geophysicae, 4, 3, 1986.

    ADS  Google Scholar 

  30. Richter, A.K., A.H. Luttrell, Superposed epoch analysis of CIR’s at 0.3 and 1.0 AU: A comparative smdy, J. Geophys. Res., 91, 5873, 1986.

    Article  ADS  Google Scholar 

  31. Richter A.K., A.H. Luttrell, Evidence of slow-mode MHD turbulence in the solar wind: Post slow shock observations at 0.31 AU, J. Geophys. Res., 92, 13653, 1987.

    Article  ADS  Google Scholar 

  32. Richter A.K., E. Marsch, Helios observational constraints on the development of interplanetary slow shocks, Annales Geophysicae, 6, 319, 1988.

    ADS  Google Scholar 

  33. Richter, A.K., K.C. Hsieh, Evidence for gradient and possibly curvature drifts at a slow shock: Helios observations at 0.31 AU, Rep. MPAE-W-79–88-36, Max-Planck-Institut für Aeronomie, Katlenburg-Lindau, Federal Republic of Germany, 1984.

    Google Scholar 

  34. Rosenau, P., S.T. Suess, Slow shocks in interplanetary medium, J. Geophys. Res., 82, 3643, 1977.

    Article  Google Scholar 

  35. Schwenn R., Relationship of coronal transients to interplanetary shocks: 3D aspects. Space Sci. Rev., 44, 139, 1986.

    ADS  Google Scholar 

  36. Smith, EJ., J.H. Wolfe, Observations of interaction region and corotating shocks between one and five AU: Pioneer 10 and 11, Geophys. Res. Lett., 3, 137, 1976.

    Article  ADS  Google Scholar 

  37. Smith, EJ., J.A. Slavin, B.T. Tsurutani, W.C. Feldman, S.J. Bame, Slow-mode shocks in the earth’s magnetotail: ISEE-3, Geophys. Res. Lett., 11, 1054, 1984.

    Article  ADS  Google Scholar 

  38. Sonett, C.D., D.S. Colbum, L. Davis Jr., EJ. Smith, PJ. Coleman Jr., Evidence for a collision-free magnetohydrodynamic shock in interplanetary space, Phys. Rev. Lett., 13, 153, 1964.

    Article  ADS  Google Scholar 

  39. Swift, D.W., On the structure of the magnetic slow switch-off shock, J. Geophys. Res., 88, 5685, 1983.

    Article  ADS  Google Scholar 

  40. Tsurutani, B.T., R.P. Lin, Acceleration of > 47-keV ions and > 2-keV electrons by interplanetary shocks at 1 AU, J. Geophys. Res., 90, 1, 1985.

    Article  ADS  Google Scholar 

  41. Viñas, A.F., J.D. Scudder, Fast and optimal solution to the “Rankine-Hugoniot problem”, J. Geophys. Res., 91, 39, 1986.

    Article  ADS  Google Scholar 

  42. Volkmer, P.M., F.M. Neubauer, Statistical properties of fast magnetoacoustic shock waves in the solar wind between 0.3 and 1 AU: Helios-1 and -2 observations, Annales Geophysicae, 3, 1, 1985.

    ADS  Google Scholar 

  43. Whang, Y.C., Slow shocks around the sun, Geophys. Res. Lett., 9, 1081, 1982.

    Article  ADS  Google Scholar 

  44. Whang, Y.C., Slow shocks and theh- transition to fast shocks in the inner solar wind, J. Geophys. Res., 92, 4349, 1987.

    Article  ADS  Google Scholar 

  45. Whang, Y.C., Evolution of CME associated slow shocks, presented at the Sixth International Solar Wind Conference, Estes Park, Colorado, USA, 23–28 August, 1987.

    Google Scholar 

  46. Winske, D., E.K. Stover, S.P. Gary, The structure and evolution of slow-mode shocks, Geophys. Res. Lett., 12, 295, 1985.

    Article  ADS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Richter, A.K. (1991). Interplanetary Slow Shocks. In: Schwenn, R., Marsch, E. (eds) Physics of the Inner Heliosphere II. Physics and Chemistry in Space, vol 21. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-75364-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-75364-0_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-75366-4

  • Online ISBN: 978-3-642-75364-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics