Skip to main content

Large-Scale Structure of the Interplanetary Medium

  • Chapter

Part of the book series: Physics and Chemistry in Space, Space and Solar Phycics ((SPACE,volume 20))

Abstract

From eclipse observations it was well known that the solar corona is highly structured and changes its shape enormously during the solar activity cycle. Hence, it was no great surprise when both these properties (spatial structure and temporal variability) were found to be reproduced in the corona’s offspring, i.e. the solar wind. Even the first continuous observations of the interplanetary plasma performed on board the American Venus probe Mariner 2 in 1962 showed a “series of long-lived, high velocity streams separated by slower moving plasma”, as Neugebauer and Snyder [3.148] phrased it. (For an extensive and very informative review of the early years of solar wind research the interested reader is referred to [3.48]).There is a basic agreement between the slow solar wind parameters (velocity υ p ≈ 300km s-1, proton density η p ≈ 9 cm-3, proton temperature T p ≈ 4 × 104K [3.95]) and current coronal expansion models based on Parker’s theory [3.159]. This led many workers in the field to associate the slow solar wind with a “quiet state” and to regard any fast flow including that in quasistationary high-speed streams (υ ≈ 600 km s-1, η p ≈ 3 cm-3, T p ≈ 105 K [3.56]) more or less as disturbances of this quiet state.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akasofu, S.I., C.D. Fry, Heliospheric current sheet and its solar cycle variations, J. Geophys. Res., 91, 13679–13688, 1986.

    Article  ADS  Google Scholar 

  2. Alfvén, H., Electric currents in cosmic plasmas, Rev. Geophys. Space Phys., 15, 271, 1977.

    Article  ADS  Google Scholar 

  3. Asbridge, J.R., S J. Bame, W.C. Feldman, M.D. Montgomery, Helium and hydrogen velocity differences in the solar wind, J. Geophys. Res., 81, 2719, 1976.

    Article  ADS  Google Scholar 

  4. Axford, W.I., The three-dimensional structure of the interplanetary medium, in Study of Travelling Interplanetary Phenomena, ed. by M.A. Shea, D.F. Smart, S.T. Wu, D. Reidel Publishing Company, Dordrecht, Holland, 145–164, 1977.

    Chapter  Google Scholar 

  5. Balthasar, H., M. Schüssler, Preferred longitudes of sunspot groups and high-speed solar wind streams: evidence for a ‘solar memory’, Solar Physics, 87, 23–36, 1983.

    Article  ADS  Google Scholar 

  6. Bame, S.J., J.R. Asbridge, W.C. Feldman, J.T. Gosling, Solar cycle evolution of high-speed solar wind streams, Astrophys. J., 207, 977, 1976.

    Article  ADS  Google Scholar 

  7. Bame, S.J., J.R. Asbridge, W.C. Feldman, H.E. Felthauser, J.T. Gosling, A search for a general gradient in the solar wind speed at low solar latitudes, J. Geophys. Res., 82, 173–176, 1977.

    Article  ADS  Google Scholar 

  8. Bame, S.J., J.R. Asbridge, W.C. Feldman, J.T. Gosling, Evidence for a structure-free state at high solar wind speeds, J. Geophys. Res., 82, 1487–1492, 1977.

    Article  ADS  Google Scholar 

  9. Bartels, J., Terrestrial magnetic activity and its relation to solar phenomena, Terr. Magn. Atmos. Elec., 37, 1, 1932.

    Article  Google Scholar 

  10. Bartels, J., Some problems of terrestrial magnetism and electricity, in Terrestrial Magnetism and Electricity, ed. by J.A. Fleming, McGraw-Hill, New York, 385–433, 1939.

    Google Scholar 

  11. Behannon, K.W., L.F. Burlaga, A.J. Hundhausen, A comparison of coronal and interplanetary current sheet inclinations, J. Geophys. Res., 88, 7837–7842, 1983.

    Article  ADS  Google Scholar 

  12. Belcher, J.W., L. Davis, Jr., Large amplitude Alfvén waves in the interplanetary medium, 2, J. Geophys. Res., 76, 3534–3563, 1971.

    Article  ADS  Google Scholar 

  13. Bird, M., P. Edenhofer, Remote sensing observations of the solar corona, (this volume).

    Google Scholar 

  14. Bochsler, P., J. Geiss, R. Joos, Kinetic temperatures of heavy ions in the solar wind, J. Geophys. Res., 90, 10779–10789, 1985.

    Article  ADS  Google Scholar 

  15. Bohlin, J.D., N.R. Sheeley, Jr., Extreme ultraviolet observations of coronal holes, Solar Physics, 56, 125–151, 1978.

    Article  ADS  Google Scholar 

  16. Borrini, G., J.T. Gosling, S.J. Bame, W.C. Feldman, J.M. Wilcox, Solar wind helium and hydrogen structure near the heliospheric current sheet: a signal of coronal streamers at 1 AU, J. Geophys. Res., 86, 4565, 1981.

    Article  ADS  Google Scholar 

  17. Borrini, G., J.T. Gosling, S.J. Bame, W.C. Feldman, Helium abundance variations in the solar wind, Solar Physics, 83, 367–378, 1983.

    Article  ADS  Google Scholar 

  18. Bougeret, J.L., J.H. King, R. Schwerin, Solar radio bursts and in situ determination of interplanetary electron density, Solar Physics, 90, 401–412, 1984.

    Article  ADS  Google Scholar 

  19. Broussard, R.M., N.R. Sheeley, Jr., R. Tousey, J.H. Underwood, A survey of coronal holes and their solar wind associations throughout sunspot cycle 20, Solar Physics, 56, 161–183, 1978.

    Article  ADS  Google Scholar 

  20. Brueckner, G.E., J.D.F. Bartoe, Observations of high energy jets in the corona above the quiet sun, the heating of the corona and the acceleration of the solar wind, Astrophys. J., 272, 329–348, 1983.

    Article  ADS  Google Scholar 

  21. Bruno, R., L.F. Burlaga, A.J. Hundhausen, Quadrupole distortions of the heliospheric current sheet in 1976 and 1977, J. Geophys. Res., 87, 10339–10346, 1982.

    Article  ADS  Google Scholar 

  22. Bruno, R., L.F. Burlaga, A.J. Hundhausen, K-coronameter observations and potential field model comparison in 1976 and 1977, J. Geophys. Res., 89, 5381–5385, 1984.

    Article  ADS  Google Scholar 

  23. Bruno, R., U. Villante, B. Bavassano, R. Schwenn, F. Mariani, In-situ observations of the latitudinal gradients of the solar wind parameters during 1976 and 1977, Solar Physics, 104, 431–445, 1986.

    Article  ADS  Google Scholar 

  24. Bürgi, A., and J. Geiss, Helium and minor ions in the corona and solar wind: dynamics and charge states, Solar Physics, 103, 347–383, 1986.

    Article  ADS  Google Scholar 

  25. Burlaga, L.F., A reverse hydromagnetic shock in the solar wind, Cosmic Electrodyn., 1, 233, 1970.

    Google Scholar 

  26. Burlaga, L.F., Interplanetary stream interfaces, J. Geophys. Res., 79, 3717–3725, 1974.

    Article  ADS  Google Scholar 

  27. Burlaga, L.F., Corotating pressure waves without fast streams in the solar wind, J. Geophys. Res., 88, 6085–6094, 1983.

    Article  ADS  Google Scholar 

  28. Burlaga, L.F., MHD processes in the outer heliosphere, Space Sci. Rev., 39, 255–316, 1984.

    Article  ADS  Google Scholar 

  29. Burlaga, L.F., Period doubling in the outer heliosphere, J. Geophys. Res., 93, 4103–4106, 1988.

    Article  ADS  Google Scholar 

  30. Burlaga, L.F., Magnetic clouds, in Physics of the Inner Heliosphere, Vol II, ed. by R. Schwenn and E. Marsch, Springer-Verlag, Berlin, Heidelberg, New York, 1990.

    Google Scholar 

  31. Burlaga, L.F., N.F. Ness, F. Mariani, B. Bavassano, U. Villante, H. Rosenbauer, R. Schwenn, J. Harvey, Magnetic fields and flows between 1 and 0.3 AU during the primary mission of Helios-1, J. Geophys. Res., 83, 5167, 1978.

    Article  ADS  Google Scholar 

  32. Burlaga, L., R. Lepping, R. Weber, T. Armstrong, C. Goodrich, J. Sullivan, D. Gurnett, P. Kellogg, E. Keppler, F. Mariani, F. Neubauer, H. Rosenbauer, R. Schwenn, Interplanetary particles and fields, November 22 to December 6, 1977: Helios, Voyager, and IMP observations between 0.6 and 1.6 AU, J. Geophys. Res., 85, 2227–2242, 1980.

    Article  ADS  Google Scholar 

  33. Burlaga, L.F., A.J. Hundhausen, X.P. Zhao, The coronal and interplanetary current sheet in early 1976, J. Geophys. Res., 86, 8893–8898, 1981.

    Article  ADS  Google Scholar 

  34. Burlaga, L.F., R. Schwenn, H. Rosenbauer, Dynamical evolution of interplanetary magnetic fields and flows between 0.3 AU and 8.5 AU: entrainment, Geophys. Res. Lett., 10, 413–416, 1983.

    Article  ADS  Google Scholar 

  35. Burlaga, L.F., F.B. McDonald, N.F. Ness, R. Schwenn, A.J. Lazarus, F. Mariani, Interplanetary flow systems associated with cosmic ray modulation, J. Geophys. Res., 89, 6579–6587, 1984.

    Article  ADS  Google Scholar 

  36. Burlaga, L.F., V. Pizzo, A. Lazarus, P. Gazis, Stream dynamics between 1 AU and 2 AU: a comparison of observations and theory, J. Geophys. Res., 90, 7377–7388, 1985.

    Article  ADS  Google Scholar 

  37. Burlaga, L.F., F.B. McDonald, R. Schwerin, Formation of a compound stream between 0.85 AU and 6.2 AU and its effects on solar energetic particles and galactic cosmic rays, J. Geophys. Res., 91, 13331–13340, 1986.

    Article  ADS  Google Scholar 

  38. Burlaga, L.F., K.W. Behannon, L.W. Klein, Compound streams, magnetic clouds, and major geomagnetic storms, J. Geophys. Res., 92, 5725–5734, 1987.

    Article  ADS  Google Scholar 

  39. Burlaga, L.F., Interaction regions in the distant solar wind, in Proceedings of the Sixth International Solar Wind Conference, ed. by V.J. Pizzo, T.E. Holzer, and D.G. Sime, NCAR/TN 306+Proc, Boulder, Colorado, 547–562, 1988.

    Google Scholar 

  40. Chao, J.K., V. Formisano, P.C. Hedgecock, Shock pair observations, in Solar Wind, NASA SP 308, 435, 1972.

    Google Scholar 

  41. Chernosky, E.J., Double sunspot-cycle variation in terrestrial magnetic activity, 1884–1963, J. Geophys. Res., 71, 965, 1966.

    ADS  Google Scholar 

  42. Cliver, E.W., J.D. Mihalov, N.R. Sheeley, Jr., R.A. Howard, M.J. Koomen, R. Schwenn, Solar activity and heliospheric-wide cosmic ray modulation in mid-1982, J. Geophys. Res., 92, 8487–8501, 1987.

    Article  ADS  Google Scholar 

  43. Coles, W.A., B.J. Rickett, IPS observations of the solar wind speed out of the ecliptic, J. Geophys. Res., 81, 4797–4799, 1976.

    Article  ADS  Google Scholar 

  44. Coles, W.A., B.J. Rickett, V.H. Ramsey, J.J. Kaufman, D.G. Turley, S. Ananthakrishnan, J.W. Armstrong, J.K. Harmons, LS.L. Scott, D.G. Sime, Solar cycle changes in the polar solar wind, Nature, 286, 239–241, 1980.

    Article  ADS  Google Scholar 

  45. Dehmel, G., F.M. Neubauer, D. Lukoschus, J. Wawretzko, E. Lammers, Das Induktionsspulen-Magnetometer-Experiment (E4), Raumfahrtforschung, 19, 241–244, 1975.

    ADS  Google Scholar 

  46. Denskat, K.U., Untersuchung von Alfvènischen Fluktuationen im Sonnenwind zwischen 0,29 AE und 1,0 AE, Dissertation an der Naturwissenschaftlichen Fakultät der Technischen Universität Carolo-Wilhelmina zu Braunschweig, 1982.

    Google Scholar 

  47. Denskat, K.U., F.M. Neubauer, Observations of hydrodynamic turbulence in the solar wind, in Solar Wind Five, NASA Conf. Publ. 2280, 81–91, 1983.

    Google Scholar 

  48. Dessler, A.J., Solar wind and interplanetary magnetic field, Rev. Geophys., 5, 1–41, 1967.

    Article  ADS  Google Scholar 

  49. Dessler, A.J., J.A. Fejer, Interpretation of Kp index and M-region geomagnetic storms, Planet. Space Sci., 11, 505–511, 1963.

    Article  ADS  Google Scholar 

  50. Diodato, L., G. Moreno, C. Signorini, K.W. Ogilvie, Long-term variations of the solar wind proton parameters, J. Geophys. Res., 79, 5095, 1974.

    Article  ADS  Google Scholar 

  51. Diodato, L., G. Moreno, On the heliographic latitude dependence of the solar wind velocity, Astrophys. and Space Sci., 39, 409–414, 1976.

    Article  ADS  Google Scholar 

  52. D’Angelo, N., G. Joyce, M.E. Pesses, Landau damping effects on solar wind fast streams, in Solar Wind Four, Max-Planck-Inst. f. Aeronomie, Katlenburg-Lindau, MPAE-W-100–81–31, 159, 1981.

    Google Scholar 

  53. Eselevich, V.G., M.A. Filippov, An investigation of the heliospheric current sheet (HCS) structure, Planet. Space Sci., 36, 105–115, 1988.

    Article  ADS  Google Scholar 

  54. Feldman, W.C., J.R. Asbridge, S.J. Bame, M.D. Montgomery, Double ion streams in the solar wind, J. Geophys. Res., 78, 2017, 1973.

    Article  ADS  Google Scholar 

  55. Feldman, W.C., J.R. Asbridge, S.J. Bame, M.D. Montgomery, S.P. Gary, Solar wind electrons, J. Geophys. Res., 80, 4181, 1975.

    Article  ADS  Google Scholar 

  56. Feldman, W.C., J.R. Asbridge, S J. Bame, J.T. Gosling, High-speed solar wind parameters at 1 AU, J. Geophys. Res., 81, 5054–5060, 1976.

    Article  ADS  Google Scholar 

  57. Feldman, W.C., J.R. Asbridge, S.J. Bame, J.T. Gosling, Plasma and magnetic fields from the sun, in The Solar Output and its Variations, ed. by O.R. White, Colorado Associated University Press, Boulder, 351–381, 1977.

    Google Scholar 

  58. Feldman, W.C., J.R. Asbridge, S.J. Bame, J.T. Gosling, Long-term variations of selected solar wind properties: Imp 6, 7, and 8 results, J. Geophys. Res., 83, 2177–2189, 1978.

    Article  ADS  Google Scholar 

  59. Feldman, W.C., J.R. Asbridge, S.J. Bame, J.T. Gosling, D.S. Lemons, Characteristic electron variations across simple high-speed solar wind streams, J. Geophys. Res., 83, 5285–5295, 1978.

    Article  ADS  Google Scholar 

  60. Feldman, W.C., J.R. Asbridge, S.J. Bame, J.T. Gosling, D.S. Lemons, Electron heating within interaction zones of simple high-speed solar wind streams, J. Geophys. Res., 83, 5297–5303, 1978.

    Article  ADS  Google Scholar 

  61. Feldman, W.C., J.R. Asbridge, S.J. Bame, J.T. Gosling, Long-term solar wind electron variations between 1971 and 1978, J. Geophys. Res., 84, 7371–7377, 1979.

    Article  ADS  Google Scholar 

  62. Feldman, W.C., J.R. Asbridge, S.J. Bame, E.E. Fenimore, J.T. Gosling, The solar origins of solar wind interstream flows: near-equatorial coronal streamers, J. Geophys. Res., 86, 5408–5416, 1981.

    Article  ADS  Google Scholar 

  63. Fisher, R., D.G. Sime, Solar activity cycle variation of the K corona, Astrophys. J., 285, 354–358, 1984.

    Article  ADS  Google Scholar 

  64. Geiss, J., P. Hirt, H. Leutwyler, On acceleration and motions of ions in corona and solar wind, Solar Physics, 12, 458, 1970.

    Article  ADS  Google Scholar 

  65. Gosling, J.T., Variations in the solar wind speed along the earth’s orbit, Solar Physics, 17, 499–508, 1971.

    Article  ADS  Google Scholar 

  66. Gosling, J.T., A.J. Hundhausen, V. Pizzo, J.R. Asbridge, Compressions and rarefactions in the solar wind: Vela 3, J. Geophys. Res., 77, 5442, 1972.

    Article  ADS  Google Scholar 

  67. Gosling, J.T., A.J. Hundhausen, S.J. Bame, Solar wind stream evolution at large heliocentric distances: experimental demonstration and the test of a model, J. Geophys. Res., 81, 2111–2122, 1976.

    Article  ADS  Google Scholar 

  68. Gosling, J.T., J.R. Asbridge, S.J. Bame, W.C. Feldman, Solar wind speed variations: 1962–1974, J. Geophys. Res., 81, 5061–5070, 1976.

    Article  ADS  Google Scholar 

  69. Gosling, J.T., J.R. Asbridge, S.J. Bame, W.C. Feldman, Preferred solar wind emitting longitudes on the sun, J. Geophys. Res., 82, 2371–2376, 1977.

    Article  ADS  Google Scholar 

  70. Gosling, J.T., A.J. Hundhausen, Waves in the solar wind, Scientific American, March, 36–43, 1977.

    Google Scholar 

  71. Gosling, J.T., E. Hildner, J.R. Asbridge, S.J. Bame, W.C. Feldman, Noncompressive density enhancements in the solar wind, J. Geophys. Res., 82, 5005, 1977.

    Article  ADS  Google Scholar 

  72. Gosling, J.T., J.R. Asbridge, S.J. Bame, W.C. Feldman, Solar wind stream interfaces, J. Geophys. Res., 83, 1401–1412, 1978.

    Article  ADS  Google Scholar 

  73. Gosling, J.T., G. Borrini, J.R. Asbridge, S.J. Bame, W.C. Feldman, R.T. Hansen, Coronal streamers in the solar wind at 1 AU, J. Geophys. Res., 86, 5438–5448, 1981.

    Article  ADS  Google Scholar 

  74. Gosling, J.T., J.R. Asbridge, S.J. Bame, W.C. Feldman, R.D. Zwickl, G. Paschmann, N. Sckopke, C.T. Russell, A sub-alfvénic solar wind: interplanetary and magnosheath observations, J. Geophys. Res., 87, 239–245, 1982.

    Article  ADS  Google Scholar 

  75. Grünwaldt, H., H. Rosenbauer, Study of helium and hydrogen velocity differences as derived from HEOS-2 S-210 solar wind measurements, in Pleins Feux sur la Physique Solaire, editions CNRS, 377–388, 1978.

    Google Scholar 

  76. Gurnett, D.A., Waves and instabilities, in Physics of the Inner Heliosphere, Vol II, ed. by R. Schwenn and E. Marsch, Springer-Verlag, Berlin, Heidelberg, New York, 1990.

    Google Scholar 

  77. Gurnett, D.A., R.R. Anderson, D.L. Odem, The University of Iowa HELIOS solar wind plasma wave experiment (E5a), Raumfahrtforschung, 19, 245–247, 1975.

    ADS  Google Scholar 

  78. Gurnett, D.A., R.R. Anderson, Plasma wave electric fields in the solar wind: initial results from Helios-1, J. Geophys. Res., 82, 632, 1977.

    Article  ADS  Google Scholar 

  79. Habbal, S.R., K. Tsinganos, Multiple transonic solutions with a new class of shock transitions in steady isothermal solar and stellar winds, J. Geophys. Res., 88, 1965–1975, 1983.

    Article  ADS  Google Scholar 

  80. Habbal, S.R., R. Rosner, Temporal evolution of the solar wind and the formation of a standing shock, J. Geophys. Res., 89, 10645–10657, 1984.

    Article  ADS  Google Scholar 

  81. Hakamada, K., Y. Munakata, A cause of the solar wind speed variations: an update, J. Geophys. Res., 89, 357–361, 1984.

    Article  ADS  Google Scholar 

  82. Hale, G.E., Preliminary results of an attempt to detect the general magnetic field of the sun, Astrophys. J., 38, 27, 1913.

    Article  ADS  Google Scholar 

  83. Hansen, R.T., S.F. Hansen, C. Sawyer, Long lived coronal structures and recurrent geomagnetic patterns in 1974, Planet. Space Sci., 24, 381, 1976.

    Article  ADS  Google Scholar 

  84. Harvey, J.W., A.S. Krieger, J.M. Davis, A.F. Timothy, G.S. Vaiana, Comparison of Skylab X ray and ground-based helium observations, Bull. Amer. Astron. Soc., 7, 358, 1975.

    ADS  Google Scholar 

  85. Harvey, K.L., N.R. Sheeley, Jr., J.W. Harvey, Magnetic measurements of coronal holes during 1975–1980, Solar Physics, 79, 149–160, 1982.

    Article  ADS  Google Scholar 

  86. Hernandez, R., S. Livi, E. Marsch, On the He+ to H+ temperature ratio in slow solar wind, J. Geophys. Res., 92, 7723–7727, 1987.

    Article  ADS  Google Scholar 

  87. Hirshberg, J., The transport of flare plasma from the sun to the earth, Planet. Space Sci., 16, 309, 1968.

    Article  ADS  Google Scholar 

  88. Hoeksema, J.T., J.M. Wilcox, P.H. Scherrer, Structure of the heliospheric current sheet in the early portion of sunspot, J. Geophys. Res., 87, 10331–10338, 1982.

    Article  ADS  Google Scholar 

  89. Hoeksema, J.T., J.M. Wilcox, P.H. Scherrer, The structure of the heliospheric current sheet: 1978–1982, J. Geophys. Res., 88, 9910–9918, 1983.

    Article  ADS  Google Scholar 

  90. Holzer, T.E., Effects of rapidly diverging flow, heat addition, and momentum addition in the solar wind and stellar winds, J. Geophys. Res., 82, 23, 1977.

    Article  ADS  Google Scholar 

  91. Howard, R., B.J. Labonte, Surface magnetic fields during the solar activity cycle, Solar Physics, 74, 131–145, 1981.

    Article  ADS  Google Scholar 

  92. Howard, R.A., M.J. Koomen, Observation of sectored structure in the outer solar corona: correlation with interplanetary magnetic field, Solar Physics, 37, 469–475, 1974.

    Article  ADS  Google Scholar 

  93. Howard, R.A., N.R. Sheeley, Jr., M.J. Koomen, D.J. Michels, Coronal mass ejections: 1979–1981, J. Geophys. Res., 90, 8173–8191, 1985.

    Article  ADS  Google Scholar 

  94. Hundhausen, A.J., Nonthermal heating in the quiet solar wind, J. Geophys. Res., 74, 5810–5813, 1969.

    Article  ADS  Google Scholar 

  95. Hundhausen, A.J., Coronal Expansion and Solar Wind, Springer, New York, 1972.

    Book  Google Scholar 

  96. Hundhausen, A.J., Nonlinear model of high-speed solar wind streams, J. Geophys. Res., 78, 1528–1542, 1973.

    Article  ADS  Google Scholar 

  97. Hundhausen, A.J., Solar wind spatial structure: the meaning of latitude gradients on observations averaged over solar longitude, J. Geophys. Res., 83, 4186–4192, 1978.

    Article  ADS  Google Scholar 

  98. Hundhausen, A.J., Solar activity and the solar wind, Reviews of Geophysics and Space Physics, 17, 2034–2048, 1979.

    Article  ADS  Google Scholar 

  99. Hundhausen, A.J., S.J. Bame, M.D. Montgomery, Variations of solar wind plasma properties: Vela observations of a possible heliographic latitude dependence, J. Geophys. Res., 76, 5145, 1971.

    Article  ADS  Google Scholar 

  100. Hundhausen, A.J., L.F. Burlaga, A model for the origin of solar wind stream interfaces, J. Geophys. Res., 80, 1845–1848, 1975.

    Article  ADS  Google Scholar 

  101. Hundhausen, A.J., J.T. Gosling, Solar wind structure at large heliocentric distances: an interpretation of Pioneer 10 observations, J. Geophys. Res., 81, 1845, 1976.

    Article  Google Scholar 

  102. Hundhausen, A.J., R.T. Hansen, S.F. Hansen, Coronal evolution during the sunspot cycle: coronal holes observed with the Mauna Loa K-coronameters, J. Geophys. Res., 86, 2079–2094, 1981.

    Article  ADS  Google Scholar 

  103. Hundhausen, A.J., C.B. Sawyer, L.L. House, R.M.E. Illing, W.J. Wagner, Coronal mass ejections observed during the Solar Maximum Mission: latitude distribution and rate of occurrence, J. Geophys. Res., 89, 2639, 1984.

    Article  ADS  Google Scholar 

  104. Hundhausen, A.J., The origin and propagation of coronal mass ejections, in Proceedings of the Sixth International Solar Wind Conference, ed. by V.J. Pizzo, T.E. Holzer, and D.G. Sime, NCAR/TN 306+Proc, Boulder, Colorado, 181–214, 1988.

    Google Scholar 

  105. Jockers, K., Solar wind models based on exospheric theory, Astron. Astrophys., 6, 219–239, 1970.

    ADS  Google Scholar 

  106. Kamide, Y., J.A. Slavin (Eds.), Solar Wind-Magnetosphere Coupling, Astrophysics and Space Science Library, D. Reidel Publishing Company, Dordrecht, Boston, Lancaster, Tokyo, 126, 1986.

    Google Scholar 

  107. Kellogg, P.J., G.A. Peterson, L. Lacabanne, The electric field experiment for HELIOS (E5b), Raumfahrtforschung, 19, 248–250, 1975.

    ADS  Google Scholar 

  108. King, J.H. (Ed.), Interplanetary Medium Data Book, NSSDC/WDC-A-R/S, 77–04, 1977.

    Google Scholar 

  109. Klein, L., L.F. Burlaga, Interplanetary sector boundaries 1971–1973, J. Geophys. Res., 85, 2269–2276, 1980.

    Article  ADS  Google Scholar 

  110. Klein, L.W., L.F. Burlaga, Interplanetary magnetic clouds at 1 AU, J. Geophys. Res., 87, 613, 1982.

    Article  ADS  Google Scholar 

  111. Kojima, M., T. Kakinuma, Solar cycle evolution of solar wind speed structure between 1973 and 1985 observed with the interplanetary scintillation, J. Geophys. Res., 92, 7269–7279, 1987.

    Article  ADS  Google Scholar 

  112. Kopp, R.A., T.E. Holzer, Dynamic of coronal hole regions. I: Steady polytropic flows with multiple critical points, Solar Physics, 49, 43, 1976.

    Article  ADS  Google Scholar 

  113. Korzhov, N.P., Large-scale three-dimensional structure of the interplanetary magnetic field, Solar Physics, 55, 505–517, 1977.

    Article  ADS  Google Scholar 

  114. Korzhov, N.P., V.V. Mishin, V.M. Tomozov, On the role of plasma parameters and the Kelvin-Helmholtz instability in a viscous interaction of solar wind streams, Planet. Space Sci., 32, 1169–1178, 1984.

    Article  ADS  Google Scholar 

  115. Krieger, A.S., A.F. Timothy, E.C. Roelof, A coronal hole and its identification as the source of a high velocity solar wind stream, Solar Physics, 23, 123, 1973.

    Google Scholar 

  116. Kumar, S., A.L. Broadfoot, Evidence from Mariner 10 of solar wind flux depletion at high ecliptic latitudes, Astrophys. J., 228, 302, 1979.

    Article  ADS  Google Scholar 

  117. Kunow, H., G. Wibberenz, G. Green, R. Müller-Mellin, and M.-B. Kallenrode, Energetic particles in the inner solar system, in Physics of the Inner Heliosphere, Vol II, ed. by R. Schwenn and E. Marsch, Springer-Verlag, Berlin, Heidelberg, New York, 1990.

    Google Scholar 

  118. Lallement, R., J.L. Bertaux, V.G. Kurt, Solar wind decrease at high heliographic latitudes detected from Prognoz interplanetary Lyman alpha mapping, J. Geophys. Res., 90, 1413, 1985.

    Article  ADS  Google Scholar 

  119. Lallement, R., T.E. Holzer, R.H. Munro, Solar wind expansion in a polar coronal hole: inferences from coronal white light and interplanetary Lyman alpha observations, J. Geophys. Res., 91, 6751–45759, 1986.

    Article  ADS  Google Scholar 

  120. Lazarus, A.J., Trailing edges of high speed solar wind streams, Preprint CSR-Pj-76–11, 1976.

    Google Scholar 

  121. Lazarus, A., J. Belcher, Large-scale structure of the distant solar wind, in Proceedings of the Sixth International Solar Wind Conference, ed. by V.J. Pizzo, T.E. Holzer, and D.G. Sime eds., NCAR/TN 306+Proc, Boulder, Colorado, 533–546, 1988.

    Google Scholar 

  122. Lazarus, A.J., B. Yedidia, L. Villanueva, R.L. McNutt, Jr., J.W. Belcher, U. Villante, L.F. Burlaga, Meridional plasma flow in the outer heliosphere, Geophys. Res. Lett., 15, 1519–1522, 1988.

    Article  ADS  Google Scholar 

  123. Leer, E., T.E. Holzer, Energy addition in the solar wind, J. Geophys. Res., 85, 4681–4688, 1980.

    Article  ADS  Google Scholar 

  124. Leinert, C., I. Richter, B. Planck, Stability of the zodiacal light from minimum to maximum of the solar cycle, Astron. Astrophys., 110, 111–114, 1982.

    ADS  Google Scholar 

  125. Leinert, C., E. Grün, Interplanetary dust, in Physics of the Inner Heliosphere, (this volume).

    Google Scholar 

  126. Levine, R.H., The relation of open magnetic structures to solar wind flow, J. Geophys. Res., 83, 4193–4199, 1978.

    Article  ADS  Google Scholar 

  127. Livi, S., E. Marsch, H. Rosenbauer, Coulomb collisional domains in the solar wind, J. Geophys. Res., 91, 8045–8050, 1986.

    Article  ADS  Google Scholar 

  128. Livi, S., E. Marsch, Generation of solar wind proton tails and double beams by Coulomb collisions, J. Geophys. Res., 92, 7255–7261, 1987.

    Article  ADS  Google Scholar 

  129. Lopez, R.E., Solar cycle invariance in solar wind proton temperature relationships, J. Geophys. Res., 92, 11189–11194, 1987.

    Article  ADS  Google Scholar 

  130. Lopez, R.E., J.W. Freeman, E.C. Roelof, The relationship between proton temperature and momentum flux density in the solar wind, Geophys. Res. Lett., 13, 640–643, 1986.

    Article  ADS  Google Scholar 

  131. Mariani, F., F.M. Neubauer, Interplanetary magnetic field, in Physics of the Inner Heliosphere, (this volume).

    Google Scholar 

  132. Marsch, E., Kinetic physics of the solar wind plasma, in Physics of the Inner Heliosphere, Vol II, ed. by R. Schwerin and E. Marsch, Springer-Verlag, Berlin, Heidelberg, New York, 1990.

    Google Scholar 

  133. Marsch, E., MHD-turbulence in the solar wind, in Physics of the Inner Heliosphere, Vol II, ed. by R. Schwerin and E. Marsch, Springer-Verlag, Berlin, Heidelberg, New York, 1990.

    Google Scholar 

  134. Marsch, E., K.H. Mühlhäuser, H. Rosenbauer, R. Schwerin, K.U. Denskat, Pronounced proton core temperature anisotropy, ion differential speed, and simultaneous Alfvén wave activity in slow solar wind at 0.3 AU, J. Geophys. Res., 86, 9199–9203, 1981.

    Article  ADS  Google Scholar 

  135. Marsch, E., K.H. Mühlhäuser, H. Rosenbauer, R. Schwerin, F.M. Neubauer, Solar wind helium ions: observations of the Helios solar probes between 0.3 and 1 AU, J. Geophys. Res., 87, 35–51, 1982.

    Article  ADS  Google Scholar 

  136. Marsch, E., K.H. Mühlhäuser, R. Schwenn, H. Rosenbauer, W. Pilipp, F.M. Neubauer, Solar wind protons: three-dimensional velocity distributions and derived plasma parameters measured between o.3 and 1 AU, J. Geophys. Res., 87, 52–72, 1982.

    Article  ADS  Google Scholar 

  137. Marsch, E., A.K. Richter, Distribution of solar wind angular momentum between particles and magnetic field: inferences about the Alfvén critical point from Helios observations, J. Geophys. Res., 89, 5386–5394, 1984.

    Article  ADS  Google Scholar 

  138. Marsch, E., A.K. Richter, Helios observational constraints on solar wind expansion, J. Geophys. Res., 89, 6599, 1984.

    Article  ADS  Google Scholar 

  139. Marsden, R.G. (Ed.), The Sun and the Heliosphere in Three Dimensions, Astrophysics and Space Science Library, D. Reidel Publishing Company, Dordrecht, Boston, Lancaster, Tokyo, 123, 1986.

    Book  Google Scholar 

  140. McNutt, R.L., Jr., Possible explanations of north-south plasma flow in the outer heliosphere and meridional transport of magnetic flux, Geophys. Res. Lett., 15, 1523–1526, 1988.

    Article  ADS  Google Scholar 

  141. Mitchell, D.G., E.C. Roelof, J.H. Wolfe, Latitude dependence of solar wind velocity observed ≥1AU, J. Geophys. Res., 86, 165–179, 1981.

    Article  ADS  Google Scholar 

  142. Miyake, W., T. Mukai, T. Terasawa, K. Hirao, Stream interaction as a heat source in the solar wind, Solar Physics, 117, 171–178, 1988.

    Article  ADS  Google Scholar 

  143. Munro, R., B. Jackson, Physical properties of a polar coronal hole from 2 to 5 Rs, Astrophys. J., 213, 874, 1977.

    Article  ADS  Google Scholar 

  144. Musmann, G., F.M. Neubauer, A. Maier, E. Lammers, Das Förstersonden-Magnetfeldexperiment (E2), Raumfahrtforschung, 19, 232–237, 1975.

    ADS  Google Scholar 

  145. Neugebauer, M., Large-scale and solar-cycle variations of the solar wind, Space Sci. Rev., 17, 221–254, 1975.

    Article  ADS  Google Scholar 

  146. Neugebauer, M., The quiet solar wind, J. Geophys. Res., 81, 4664–4670, 1976.

    Article  ADS  Google Scholar 

  147. Neugebauer, M., Observations of solar-wind helium, Fundam. Cosm. Phys., 7, 131–199, 1981.

    ADS  Google Scholar 

  148. Neugebauer, M., C.W. Snyder, Mariner 2 observations of the solar wind. 1. Average properties, J. Geophys. Res., 71, 4469–4484, 1966.

    ADS  Google Scholar 

  149. Neugebauer, M.M., W.C. Feldman, Relation between superheating and superacceleration of helium in the solar wind, Solar Physics, 63, 201–205, 1979.

    Article  ADS  Google Scholar 

  150. Neugebauer, M., C.J. Alexander, R. Schwenn, A.K. Richter, Tangential discontinuities in the solar wind: correlated field and velocity changes and the Kelvin-Helmholtz instability, J. Geophys. Res., 91, 13694–13698, 1986.

    Article  ADS  Google Scholar 

  151. Neupert, W.M., V. Pizzo, Solar coronal holes as sources of recurrent geomagnetic disturbances, J. Geophys. Res., 79, 3701, 1974.

    Article  ADS  Google Scholar 

  152. Newkirk, G., Jr., L.A. Fisk, Variation of cosmic rays and solar wind properties with respect to the heliospheric current sheet. 1. Five-GeV protons and solar wind speed, J. Geophys. Res., 90, 3391, 1985.

    Article  ADS  Google Scholar 

  153. Nolte, J.T., A.S. Krieger, A.F. Timothy, R.E. Gold, E.C. Roelof, G. Vaiana, A.J. Lazarus, J.D. Sullivan, P.S. McIntosh, Coronal holes as sources of solar wind, Solar Physics, 46, 303–322, 1976.

    Article  ADS  Google Scholar 

  154. Nolte, J.T., A.S. Krieger, E.C. Roelof, R.E. Gold, High coronal structure of high velocity solar wind stream sources, Solar Physics, 51, 459–471, 1977.

    Article  ADS  Google Scholar 

  155. Nolte, J.T., J.M. Davis, M. Gerassimenko, A.J. Lazarus, J.D. Sullivan, A comparison of solar wind streams and coronal structure near solar minimum, Geophys. Res. Lett., 4, 291–294, 1977.

    Article  ADS  Google Scholar 

  156. Nolte, J.T., M. Gerassimenko, A.S. Krieger, C.V. Solodyna, Coronal hole evolution by sudden large scale changes, Solar Physics, 56, 153–159, 1978.

    Article  ADS  Google Scholar 

  157. Ogilvie, K.W., Corotating shock structures, in Solar Wind, NASA SP 308, 430–434, 1972.

    Google Scholar 

  158. Ogilvie, K.W., J. Hirshberg, The solar cycle variation of the solar wind helium abundance, J. Geophys. Res., 79, 4595–4602, 1974.

    Article  ADS  Google Scholar 

  159. Parker, E.N., Dynamics of the interplanetary gas and magnetic fields, Astrophys. J., 128, 664–675, 1958.

    Article  ADS  Google Scholar 

  160. Parker, E.N., Magnetic neutral sheets in evolving fields. II: Formation of the solar corona, Astrophys. J., 264, 642–647, 1983.

    Article  ADS  Google Scholar 

  161. Pilipp, W.G., R. Schwerin, E. Marsch, K.H. Mühlhäuser, H. Rosenbauer, Electron characteristics in the solar wind as deduced from Helios observations, in Solar Wind Four, Max-Planck-Inst. f. Aeronomie, Katlenburg-Lindau, MPAE-W-100–81–31, 241–249, 1981.

    Google Scholar 

  162. Pilipp, W.G., H. Miggenrieder, K.H. Mühlhäuser, H. Rosenbauer, R. Schwerin, Data analysis of electron measurements of the plasma experiment aboard the Helios probes, MPE report, 185, 1984.

    Google Scholar 

  163. Pilipp, W.G., H. Miggenrieder, M.D. Montgomery, K.H. Mühlhäuser, H. Rosenbauer, R. Schwerin, Characteristics of electron velocity distribution functions in the solar wind derived from the Helios plasma experiment, J. Geophys. Res., 92, 1075–1092, 1987.

    Article  ADS  Google Scholar 

  164. Pilipp, W.G., H. Miggenrieder, K.H. Mühlhäuser, H. Rosenbauer, R. Schwerin, F.M. Neubauer, Variations of electron distribution functions in the solar wind, J. Geophys. Res., 92, 1103–1118, 1987.

    Article  ADS  Google Scholar 

  165. Pilipp, W.G., H. Miggenrieder, K.H. Mühlhäuser, H. Rosenbauer, R. Schwenn, Large scale variations of thermal electron properties in the solar wind, submitted to J. Geophys. Res., 1988.

    Google Scholar 

  166. Pizzo, V.J., A three-dimensional model of corotating streams in the solar wind. 3: Magneto-hydrodynamic streams, J. Geophys. Res., 87, 4374–4394, 1982.

    Article  ADS  Google Scholar 

  167. Pizzo, V., R. Schwenn, E. Marsch, H. Rosenbauer, K.H. Mühlhäuser, F.M. Neubauer, Determination of the solar wind angular momentum flux from the Helios data — an observational test of the Weber and Davis theory, Astrophys. J., 271, 335–354, 1983.

    Article  ADS  Google Scholar 

  168. Pneuman, G.W., Latitude dependence of the solar wind speed: influence of the coronal magnetic field geometry, J. Geophys. Res., 81, 5049–5053, 1976.

    Article  ADS  Google Scholar 

  169. Pneuman, G.W., Ejection of magnetic fields from the sun: acceleration of a solar wind containing diamagnetic plasmoids, Astrophys. J., 265, 468–482, 1983.

    Article  ADS  Google Scholar 

  170. Pneumann, G.W., Driving mechanisms for the solar wind, Space Science Rev., 43, 105–138, 1986.

    Article  ADS  Google Scholar 

  171. Porsche, H. (Ed.), 10 Jahre HELIOS, Festschrift aus Anlaß des 10. Jahrestages des Starts der Sonnensonde Helios am 10. Dezember 1974, DFVLR Oberpfaffenhofen, 1984.

    Google Scholar 

  172. Priest, E.R. (Ed.), Solar flare magnetohydrodynamics, in The Fluid Mechanics of Astrophysics and Geophysics, ed. by P.H. Roberts, Gordon and Breach Science Publishers, New York, London, Paris, 1, 1981.

    Google Scholar 

  173. Rhodes, E.J., Jr., E.J. Smith, Multispacecraft study of the solar wind velocity at interplanetary sector boundaries, J. Geophys. Res., 80, 917–928, 1975.

    Article  ADS  Google Scholar 

  174. Rhodes, E.J., Jr., E.J. Smith, Evidence of a large-scale gradient in the solar wind velocity, J. Geophys. Res., 81, 2123–2134, 1976.

    Article  ADS  Google Scholar 

  175. Rhodes, E.J, Jr., E.J. Smith, Further evidence of a latitude gradient in the solar wind velocity, J. Geophys. Res., 81, 5833, 1976.

    Article  ADS  Google Scholar 

  176. Rhodes, E.J., Jr., E.J. Smith, Multi-spacecraft observations of heliographic latitude-longitude structure in the solar wind, J. Geophys. Res., 86, 8877–8892, 1981.

    Article  ADS  Google Scholar 

  177. Richter, A.K., R. Schwerin, F.M. Neubauer, Nature and origin of corotating shock waves within 1 AU, MPAE-W-79–80–38, Max-Planck-Inst. f. Aeron., Katlenburg-Lindau, 1980.

    Google Scholar 

  178. Richter, A.K., K.C. Hsieh, A.H. Luttrell, E. Marsch, R. Schwenn, Review of interplanetary shock phenomena near and within 1 AU, in Collisiorless Shocks in the Heliosphere: Reviews of Current Research, Geophysical Monograph, 35, 33–50, 1985.

    Chapter  Google Scholar 

  179. Richter, A.K., A.H. Luttrell, Superposed epoch analysis of corotating interaction regions at 0.3 and 1.0 AU: a comparative study, J. Geophys. Res., 91, 5873–5878, 1986.

    Article  ADS  Google Scholar 

  180. Robbins, D.E., Helium in the Solar Wind, J. Geophys. Res., 75, 1178–1187, 1970.

    Article  ADS  Google Scholar 

  181. Roelof, E.C., S.M. Krimigis, Analysis and synthesis of coronal and interplanetary energetic particle, plasma, and magnetic field observations over three solar rotations, J. Geophys. Res., 78, 5375, 1973.

    Article  ADS  Google Scholar 

  182. Rosenbauer, H., Possible effects of photoelectron emission on a low-energy electron experiment, in Photon and Particle Interactions with Surfaces in Space, ed. by R.J.L. Grard, D. Reidel Publishing Company, Dordrecht, Holland, 139, 1973.

    Google Scholar 

  183. Rosenbauer, H., H. Miggenrieder, M.D. Montgomery, R. Schwenn, Preliminary results of the Helios plasma measurements, in Physics of Solar Planetary Environments, ed. by D.J. Williams, American Geophysical Union, 319–331, 1976.

    Google Scholar 

  184. Rosenbauer, H., R. Schwenn, E. Marsch, B. Meyer, H. Miggenrieder, M. Montgomery, K.H. Mühlhäuser, W. Pilipp, W. Voges, S.K. Zink, A survey on initial results of the Helios plasma experiment, J. Geophys., 42, 561–580, 1977.

    Google Scholar 

  185. Rosenbauer, H., R. Schwenn, S. Bame, The prediction of fast stream front arrivals at the Earth on the basis of solar wind measurements at smaller solar distances, in Proc. of AGARD-Symposium on ‘Operation Modelling of the Aerospace Propagation Environment’, Ottawa, Canada 24–28 April 1978, ed. by H. Soicher, AGARD-CP-238, 32–1, 1978.

    Google Scholar 

  186. Rosenbauer, H., R. Schwenn, H. Miggenrieder, B. Meyer, H. Grünwaldt, K.H. Mühlhäuser, H. Pellkofer, J.H. Wolfe, Die Instrumente des Plasmaexperiments auf den Helios-Sonnensonden, BMFT-FB-W 81–015, 1981.

    Google Scholar 

  187. Rosenberg, R.L., P.J. Coleman, Heliographic latitude dependence of the dominant polarity of the interplanetary magnetic field, J. Geophys. Res., 74, 5611, 1969.

    Article  ADS  Google Scholar 

  188. Rosenberg, R.L., P.J. Coleman, Jr., Solar cycle-dependent north-south field configurations observed in solar wind interaction regions, J. Geophys. Res., 85, 3021–3032, 1980.

    Article  ADS  Google Scholar 

  189. Russell, C.T., On the heliographic latitude dependence of the interplanetary magnetic field as deduced from the 22-year cycle of geomagnetic activity, Geophys. Res. Lett., 1, 11–12, 1974.

    Article  ADS  Google Scholar 

  190. Saito, T., Two-hemisphere model on the three-dimensional magnetic structure of the interplanetary space, Sci. Rep. Tohoku University, Ser. 5, Geophysics, 23, 37–54, 1975.

    Google Scholar 

  191. Sarabhai, V., Some consequences of nonuniformity of solar wind velocity, J. Geophys. Res., 68, 1555–1557, 1963.

    Article  ADS  Google Scholar 

  192. Sastri, J.H., Solar wind flow associated with stream-free sector boundaries at 1 AU, Solar Physics, 111, 429–437, 1987.

    Article  ADS  Google Scholar 

  193. Scearce, C., S. Cantarano, N. Ness, F.R. Mariani, R. Terenzi, L. Burlaga, The Rome-GSFC magnetic field experiment for HELIOS A and B (E3), Raumfahrtforschung, 19, 237–240, 1975.

    ADS  Google Scholar 

  194. Schmidt, W.K.H., H. Rosenbauer, E.G. Shelley, J. Geiss, On temperature and speed of He++ and O 6+ ions in the solar wind, Geophys. Res. Lett., 7, 697–700, 1980.

    Article  ADS  Google Scholar 

  195. Schulz, M., Interplanetary sector structure and the heliomagnetic equator, Astrophys. Space Sci., 24, 371–383, 1973.

    Article  ADS  Google Scholar 

  196. Schwartz, S.J., E. Marsch, The radial evolution of a single solar wind plasma parcel, J. Geophys. Res., 88, 9919, 1983.

    Article  ADS  Google Scholar 

  197. Schwenn, R., Solar wind and its interactions with the magnetosphere: measured parameters, Adv. Space Res., 1, 3–17, 1981.

    Article  ADS  Google Scholar 

  198. Schwenn, R., The ‘average’ solar wind in the inner heliosphere: structures and slow variations, in Solar Wind 5, NASA Conf. Publ. 2280, 489, 1983.

    Google Scholar 

  199. Schwenn, R., Relationship of coronal transients to interplanetary shocks: 3 D aspects, Space Sci. Rev., 44, 139–168, 1986.

    Article  ADS  Google Scholar 

  200. Schwerin, R., H. Rosenbauer, H. Miggenrieder, Das Plasmaexperiment auf Helios (El), Raumfahrtforschung, 19, 226–232, 1975.

    ADS  Google Scholar 

  201. Schwenn, R., H. Rosenbauer, H. Miggenrieder, B. Meyer, Preliminary results of the Helios plasma experiment, in Proc. of the 18th Plenary Meeting of COSPAR, Varna 1975, ed. by MJ. Rycroft, Space Research, 16, 671, 1976.

    Google Scholar 

  202. Schwenn, R., H. Rosenbauer, K.H. Mühlhäuser, The solar wind during STIP II interval: stream structures, boundaries, shock and other features as observed on Helios-1 and Helios-2, in Contributed Papers to the Study of Travelling Interplanetary Phenomenon/ 1977, Tel Aviv, June 1977, ed. by M.A. Shea, D.F. Smart, S.T. Wu, Air Force Geophysics Laboratory Rep. Nr. 77–309, 351–361, 1977.

    Google Scholar 

  203. Schwenn, R., M. Montgomery, H. Rosenbauer, H. Miggenrieder, K.H. Mühlhäuser, S.J. Bame, W.C. Feldman, R.T. Hansen, Direct observations of the latitudinal extent of a high-speed stream in the solar wind, J. Geophys. Res., 83, 1011, 1978.

    Article  ADS  Google Scholar 

  204. Schwenn, R., K.H. Mühlhäuser, H. Rosenbauer, Two states of the solar wind at the time of solar activity minimum. I. Boundary layers between fast and slow streams, in Solar Wind Four, Max-Planck-Inst. f. Aeronomie, Katlenburg-Lindau, MPAE-W-100–81–31, 118–125, 1981.

    Google Scholar 

  205. Schwenn, R., K.H. Mühlhäuser, E. Marsch, H. Rosenbauer, Two states of the solar wind at the time of solar activity minimum. II. Radial gradients of plasma parameters in fast and slow streams, in Solar Wind Four, Max-Planck-Inst. f. Aeronomie, Katlenburg-Lindau, MPAE-W-100–81–31, 126–130, 1981.

    Google Scholar 

  206. Schwenn, R., H. Rosenbauer, Aufbereitung und Auswertung der Daten des Plasmaexperiments auf den HELIOS-Sonnensonden, BMFT-FB-W 82–002, 1982.

    Google Scholar 

  207. Sheeley, N.R., Jr., The evolution of the polar coronal hole, Solar Physics, 65, 229–235, 1980.

    Article  ADS  Google Scholar 

  208. Sheeley, N.R., Jr., J.W. Harvey, W.C. Feldman, Coronal holes, solar wind streams, and recurrent geomagnetic disturbances, 1973–1976, Solar Physics, 49, 271, 1976.

    Article  ADS  Google Scholar 

  209. Sheeley, N.R., Jr., J.R. Asbridge, S.J. Bame, J.W. Harvey, A pictorial comparison of interplanetary magnetic field polarity, solar wind speed, and geomagnetic disturbance index during the sunspot cycle, Solar Physics, 52, 485–495, 1977.

    Article  ADS  Google Scholar 

  210. Sheeley, N.R., Jr., J.W. Harvey, Coronal holes, solar wind streams, and geomagnetic disturbances during 1978 and 1979, Solar Physics, 70, 237–249, 1981.

    Article  ADS  Google Scholar 

  211. Sheeley N.R., Jr., R.A. Howard, M.J. Koomen, D.J. Michels, K.L. Harvey, J.W. Harvey, Observations of coronal structure during sunspot maximum, Space Sci. Rev., 33, 219–231, 1982.

    Article  ADS  Google Scholar 

  212. Sheeley, N.R., Jr., R.A. Howard, M.J. Koomen, D.J. Michels, R. Schwenn, K.H. Mühlhäuser, H. Rosenbauer, Coronal mass ejections and interplanetary shocks, J. Geophys. Res., 90, 163–175, 1985.

    Article  ADS  Google Scholar 

  213. Siscoe, G.L., Fluid dynamics of solar wind filaments, Solar Physics, 13, 490–498, 1970.

    Article  ADS  Google Scholar 

  214. Siscoe, G.L., Three-dimensional aspects of interplanetary shock waves, J. Geophys. Res., 81, 6235, 1976.

    Article  ADS  Google Scholar 

  215. Siscoe, G.L., L.T. Finley, Meridional (north-south) motions of the solar wind, Solar Physics, 9, 452–466, 1969.

    Article  ADS  Google Scholar 

  216. Siscoe, G.L., B. Goldstein, A.J. Lazarus, An east-west asymmetry in the solar wind velocity, J. Geophys. Res., 74, 1759–1762, 1969.

    Article  ADS  Google Scholar 

  217. Slavin, J.A., EJ. Smith, Solar cycle variations in the interplanetary magnetic field, in Solar Wind 5, NASA Conf. Publ. 2280, 323–331, 1983.

    Google Scholar 

  218. Smith, E.J., J.H. Wolfe, Observations of interaction regions and corotating shocks between one and five AU: Pioneers 10 and 11, Geophys. Res. Lett., 3, 137, 1976.

    Article  ADS  Google Scholar 

  219. Smith, E.J., B.T. Tsurutani, R.L. Rosenberg, Observations of the interplanetary sector structure up to the heliographic latitude of 16°; Pioneer 11, J. Geophys. Res., 83, 717, 1978.

    Article  ADS  Google Scholar 

  220. Snyder, C.W., M. Neugebauer, U.R. Rao, The solar wind velocity and its correlation with cosmic-ray variations and with solar and geomagnetic activity, J. Geophys. Res., 68, 6361–6370, 1963.

    ADS  Google Scholar 

  221. Snyder, C.W., M. Neugebauer, The relation of Mariner 2 plasma data to solar phenomena, in The Solar Wind, ed. by R.J. Mackin and M. Neugebauer, Pergamon Press, New York, 25–34, 1966.

    Google Scholar 

  222. Steinitz, R., M. Eyni, Global properties of the solar wind. I. The invariance of the momentum flux density, Astrophys. J., 241, 417–24, 1980.

    Article  ADS  Google Scholar 

  223. Steinitz, R., Momentum flux invariance and solar wind sources, Solar Physics, 83, 379–384, 1983.

    Article  ADS  Google Scholar 

  224. Suess, S.T., J. Feynman, Sector boundary distortion in the interplanetary medium, J. Geophys. Res., 82, 2405–2409, 1977.

    Article  ADS  Google Scholar 

  225. Suess, S.T., E. Hildner, Deformation of the heliospheric current sheet, J. Geophys. Res., 90, 9461–9468, 1985.

    Article  ADS  Google Scholar 

  226. Thieme, K.M., E. Marsch, R. Schwerin, Relationship between structures in the solar wind and their source regions in the corona, in Proceedings of the Sixth International Solar Wind Conference, ed. by V.J. Pizzo, T.E. Holzer, D.G. Sime, NCAR/TN-306+Proc, 317–321, 1987.

    Google Scholar 

  227. Thomas, B.T., E.J. Smith, The structure and dynamics of the heliospheric current sheet, J. Geophys. Res., 86, 11105–11110, 1981.

    Article  ADS  Google Scholar 

  228. Thomas, B.T., B.E. Goldstein, E.J. Smith, The effect of the heliospheric current sheet on cosmic ray intensities at solar maximum: two alternative hypotheses, J. Geophys. Res., 91, 2889–2895, 1986.

    Article  ADS  Google Scholar 

  229. Timothy, A.F., A.S. Krieger, G.S. Vaiana, The structure and evolution of coronal holes, Solar Physics, 42, 135–156, 1975.

    Article  ADS  Google Scholar 

  230. Tsurutani, B.T., R.G. Stone (Eds.), Collisionless Shocks in the Heliosphere. Reviews of Current Research, Geophysical Monograph, 35, 1985.

    Google Scholar 

  231. Villante, U., R. Bruno, F. Mariani, L.F. Burlaga, N.F. Ness, The shape and location of the sector boundary surface in the inner solar system, J. Geophys. Res., 84, 6641–6648, 1979.

    Article  ADS  Google Scholar 

  232. Webb, D.F., A.J. Hundhausen, Activity associated with the solar origin of coronal mass ejections, Solar Physics, 108, 383–401, 1987.

    Article  ADS  Google Scholar 

  233. Weber, E.J., Davis L., The angular momentum of the solar wind, Astrophys. J., 148, 217–227, 1967.

    Article  ADS  Google Scholar 

  234. Weber, R.R., The radio astronomy experiment on Helios A and B (E5c), Raumfahrtforschung, 19, 250–252, 1975.

    ADS  Google Scholar 

  235. Whang, Y.C., L.F. Burlaga, Coalescence of the pressure waves associated with stream interactions, J. Geophys. Res., 90, 221, 1985.

    Article  ADS  Google Scholar 

  236. Whang, Y.C., L.F. Burlaga, The coalescence of two merged interaction regions between 6.2 and 9.5 AU: September 1979 Event, J. Geophys. Res., 91, 13341–13348, 1986.

    Article  ADS  Google Scholar 

  237. Wilcox, J.M., N.F. Ness, Quasi-stationary corotating structure in the interplanetary medium, J. Geophys. Res., 70, 5793–5805, 1965.

    Article  ADS  Google Scholar 

  238. Wilcox, J.M., A.J. Hundhausen, Comparison of heliospheric current sheet structure obtained from potential magnetic field computations and from observed polarization coronal brightness, J. Geophys. Res., 88, 8095, 1983.

    Article  ADS  Google Scholar 

  239. Withbroe, G.L., Origins of the solar wind in the corona, in The Sun and the Heliosphere in Three Dimensions, ed. by R.G. Marsden, Astrophysics and Space Science Library, D. Reidel Publishing Company, Dordrecht, Boston, Lancaster, Tokyo, 19–32, 1986.

    Chapter  Google Scholar 

  240. Zhao, X.P., A.J. Hundhausen, Organization of solar wind plasma properties in a tilted, heliomagnetic coordinate system, J. Geophys. Res., 86, 5423–5430, 1981.

    Article  ADS  Google Scholar 

  241. Zhao, X.P., A.J. Hundhausen, Spatial structure of solar wind in 1976, J. Geophys. Res., 88, 451, 1983.

    Google Scholar 

  242. Zirker, J.B., Coronal holes and high-speed wind streams, Reviews of Geophysics and Space Physics, 15, 257–269, 1977.

    Article  ADS  Google Scholar 

  243. Zirker, J. (Ed.), Coronal Holes and High Speed Streams, Colorado Associated University Press, Boulder, 1977.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schwenn, R. (1990). Large-Scale Structure of the Interplanetary Medium. In: Schwenn, R., Marsch, E. (eds) Physics of the Inner Heliosphere I. Physics and Chemistry in Space, Space and Solar Phycics, vol 20. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-75361-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-75361-9_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-75363-3

  • Online ISBN: 978-3-642-75361-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics