Skip to main content

The Neuroethology of Perception and Action

  • Chapter
Relationships Between Perception and Action

Abstract

Neuroethology is the study of the physiological mechanisms underlying behavior (Hoyle, 1970). Its conceptual framework is biological in two important senses. First, it emphasizes a broadly comparative approach based on study material drawn from the entire animal kingdom. Second, the neuroethological analysis of behavior and neural mechanisms includes consideration of their evolutionary development and their value to the animal in its natural environment. Thus, the focus is on behavioral units of adaptive significance to the animal — functional units or actions in the language of the psychologist, and on mechanisms for identifying meaningful stimuli — perception in a broad sense.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, D.J., Smith, S.M., Thompson, S.H. (1980). Ionic currents in molluscan soma. Annual Review Of Neuroscience,3,141 –167.

    Google Scholar 

  2. Alkon, D.L. (1984). Calcium–mediated reduction of ionic currents: A biophysical memory trace. Science, 226, 1037–1045.

    Google Scholar 

  3. Alving, B.O. (1968). Spontaneous activity in isolated somata of Aplysia pacemaker neurons. Journal of General Physiology, 45, 29–45.

    Google Scholar 

  4. Bacon, J., Möhl, B. (1983). The tritocerebral commissure giant (TCG) wind-sensitive interneurone in the locust. I. Its activity in straight flight. Journal of Comparative Physiology, 150, 439–452.

    Google Scholar 

  5. Bailey, C.H., Chen, M. (1983). Morphological basis of long–term habituation and sensitization in Aplysia. Science, 220, 91–93.

    Google Scholar 

  6. Barnes, W.J.P. (1975). Nervous control of locomotion in Crustacea. In: P.N.R. Usherwood, D.R. Newth (Eds.), Simple nervous systems, (pp. 415–441 ). London: Arnold.

    Google Scholar 

  7. Barnes, W.J.P., Spirito, C.P., Evoy, W.H. (1972). Nervous control of walking in the crab, Cardisoma guanhumi. II. Role of resistance reflexes in walking. Zeitschrift für Vergleichende Physiologie, 76, 16–31.

    Google Scholar 

  8. Bässler, U. (1976). Reversal of a reflex to a single motoneuron in the stick insect Carausius morosus. Biological Cybernetics, 24, 47–49.

    Google Scholar 

  9. Bässler, U. (1983). Neural basis of elementary behavior in stick insects. Berlin, Heidelberg, New York: Springer.

    Google Scholar 

  10. Bässler, U. (1985). Proprioceptive control of stick insect walking. In B.M.H. Bush F. Clarac (Eds.), Coordination of motor behavior (Society for Experimental Biology Seminar No. 24, pp. 271–281 ). Cambridge: Cambridge University Press.

    Google Scholar 

  11. Bear, M.F., Singer, W. (1986). Modulation of visual cortical plasticity by acetylcholine and noradrenaline. Nature, 320, 172–176. Bell, C.C. (1982). Properties of a modifiable efference copy in an electric fish. Journal of Neurophysiology, 47, 1043–1056.

    Google Scholar 

  12. Bell, C.C. (1984). Effects of motor commands on sensory inflow, with examples from electric fish. In L.Bolis, R.D. Keynes, S.H.P. Maddrell (Eds.), Comparative physiology of sensory systems (pp. 637–646 ). Cambridge: Cambridge University Press.

    Google Scholar 

  13. Benjamin, P.R. (1983). Gastropod feeding: Behavioral and neural analysis of a complex multicomponent system. In A. Roberts B.L. Roberts (Eds.), Neural control of rhythmic movements (pp. 159– 193 ). Cambridge: Cambridge University Press.

    Google Scholar 

  14. Benjamin, P.R., Elliott, C.J.H., Ferguson, G.P. (1985). Neural network analysis in the snail brain. In A.I. Selverston (Ed.), Model neural networks and behavior (pp. 87–108 ). New York: Plenum.

    Google Scholar 

  15. Bernstein, N. (1967). The coordination and regulation of movements. Oxford: Pergamon. Bizzi, E., Polit, A., Morasso, P. (1976). Mechanisms underlying achievement of final head position. Journal of Neurophysiology, 39, 435–444.

    Google Scholar 

  16. Bizzi, E., Accomero, N., Chappie, W., Hogan, N. (1982a). Arm trajectory formation in monkeys. Experimental Brain Research, 46, 139–143.

    Google Scholar 

  17. Bizzi, E., Chappie, W. t Hogan, N. (1982b). Mechanical properties of muscles: implications for motor control. Trends in Neuroscience, 5, 395–398.

    Google Scholar 

  18. Boyd, I.A., Smith, R.S. (1984). The muscle spindle. In P.J. Dyck, P.K. Thomas, E.H. Lombert, R. Bunge (fids.), Peripheral neuropathy (pp. 171–202 ). Philadelphia: Saunders.

    Google Scholar 

  19. Brady, M., Hollerbach, J.M., Johnson, T.L., Lozano–Perez, T., Mason, M.T. (Eds.). (1982). Robot motion: Planning and control. Cambridge, MA: MIT Press.

    Google Scholar 

  20. Bräunig, P., Hustert, R. (1985). Actions and interactions of proprioceptors of the locust hind leg coxojoint. 1. Afferent responses in relation to joint position and movement. Journal of Comparative Physiology. A, Sensory, Neural, and Behavioral Physiology, 757, 73–82.

    Google Scholar 

  21. Brenner, S. (1974). The genetics of Caenorhabditis elegans. Genetics, 77, 71–94.

    PubMed  Google Scholar 

  22. Brodfuehrer, P.D., Friesen, W.O. (1986a). Initiation of swimming activity by trigger neurons in the leech subesophageal ganglion. I. Output connections of Tri and Tr2. Journal of Comparative Physiology. A, Sensory, Neural, and Behavioral Physiology, 159, 489–502.

    Google Scholar 

  23. Brodfuehrer, P.D., Friesen, W.O. (1986b). Initiation of swimming activity by trigger neurons in the leech subesophageal ganglion. II. Role of segmental swiminitiating intemeurons. Journal of Comparative Physiology. A, Sensory, Neural, and Behavioral Physiology, 159, 503–510.

    Google Scholar 

  24. Brodfuehrer, P.D., Friesen, W.O. (1986c). Initiation of swimming activity by trigger neurons in the leech subesophageal ganglion. IE. Sensory inputs to Tri and Tr2. Journal of Comparative Physiology. A, Sensory, Neural and Behavioral Physiology, 159, 511–519.

    Google Scholar 

  25. Brodfuehrer, P.D., Friesen, W.O. (1986d). From stimulation to undulation: A neuronal pathway for the control of swimming in the leech. Science, 234, 1002–1004.

    Google Scholar 

  26. Brown, T.G. (1914). On the nature of the fundamental activity of the nervous centres; together with an analysis of the conditioning of rhythmic activity in progression, and a theory of the evolution of function in the nervous system. Journal of Physiology, 48, 18–46.

    PubMed  Google Scholar 

  27. Bullock, T.H. (1976). In search of principles in neural integration: Are there rules in the combination of elements in neural circuits? In J.C. Fentress (Ed.), Simpler networks and behavior (pp. 52–60 ) Sunderland, MA: Sinauer.

    Google Scholar 

  28. Bullock, T.H. (1979). Evolving concepts of local integrative operations in neurons. In F.O. Schmitt F.G. Worden (Eds.) The neurosciences fourth study program (pp. 43–49 ). Cambridge, MA: MIT Press.

    Google Scholar 

  29. Burrows, M. (1975a). Monosynaptic connexions between wing stretch receptors and flight motoneurons of the locust. Journal of Experimental Biology, 62, 189–219.

    PubMed  Google Scholar 

  30. Burrows, M. (1975b). Coordinating intemeurons of the locust which convey two patterns of motor commands: Their connections with flight motoneurons. Journal of Experimental Biology, 63, 713– 733.

    Google Scholar 

  31. Burrows, M. (1985). Nonspiking and spiking local intemeurons in the locust. In A.I. Seiverston (Ed.), Model neural networks and behavior (pp. 109–125 ). New Yoik: Plenum.

    Google Scholar 

  32. Burrows, M., Siegler, M.V.S. (1982). Spiking local intemeurons mediate local reflexes. Science, 217, 650–652.

    PubMed  Google Scholar 

  33. Bush, B.M.H., Cannone, A J. (1985). How do crabs control their muscle receptors? In W.J.P. Barnes M.H. Gladden (Eds), Feedback and motor control in invertebrates and vertebrates (pp. 145– 166 ). London: Croom Helm.

    Google Scholar 

  34. Calvin, W.H., Graubard, K. (1979). Styles of neuronal computation. In F.O. Schmitt F.G. Worden (Eds.), The neurosciences fourth study program (pp. 513–524 ). Cambridge, MA: MIT Press.

    Google Scholar 

  35. Camhi, J.M. (1984). Neuroethology: Nerve cells and the natural behavior of animals. New York: Sinauer.

    Google Scholar 

  36. Camhi, J.M. (1985). Feedback control of an escape behavior. In W.J.P. Barnes M.H. Gladden (Eds.), Feedback and motor control in invertebrates and vertebrates (pp. 93–111 ). London: Croom Helm.

    Google Scholar 

  37. Carew, T.J., Sahley, C.L. (1986). Invertebrate learning and memory: From behavior to molecules. Annual Review of Neuroscience, 9, 435–487.

    Google Scholar 

  38. Collatos, T.C., Edgerton, V.R., Smith, J.L., Botterman, B.R. (1978). Fiber type compositions of flexors and extensors of elbow joint in cat: Implications for motor control. Journal of Neurophysiology, 40, 1292–1300.

    Google Scholar 

  39. Collett, T.S. (1980). Angular tracking and the optomotor response. An analysis of visual reflex interactions in the hoverfly. Journal of Comparative Physiology, 140, 145–158.

    Google Scholar 

  40. Comer, C., Camhi, J.M. (1984). Behavioral compensation for altered cercal position in the cockroach. Journal of Comparative Physiology. A, Sensory, Neural, and Behavioral Physiology, 155, 31–38.

    Google Scholar 

  41. Cook, D.G., Carew, T.J. (1986). Operant conditioning of head waving in Aplysia. Proceedings of the National Academy of Sciences of the United States of America, 83, 1120–1124.

    Google Scholar 

  42. Cooke, J.D. (1980). The organization of simple, skilled movements. In G.E. Stelmach J. Requin (Eds.), Tutorials in motor behavior (pp. 199–212 ). Amsterdam: North-Holland.

    Google Scholar 

  43. Cotman, C.W., Iversen, L.L. (1987). Excitatory amino acids in the brain focus on NMDA receptors. Trends in Neurosciences, 10, 263–265.

    Google Scholar 

  44. Dale, N., Grillner, S. (1986). Dual-component synaptic potentials in the lamprey mediated by excitatory amino acid receptors. Journal ofNeuroscience, 6, 2653–2661.

    Google Scholar 

  45. Daley, D.L., Delcomyn, F. (1980). Modulation of the excitability of cockroach giant intemeurons during walking. I. Simultaneous excitation and inhibition. Journal of Comparative Physiology, 138, 231–239.

    Google Scholar 

  46. Davis, W.J. (1985). Neural mechanisms of behavioral plasticity in an invertebrate model system. In A.I. Selverston (Ed.), Model neural networks and behavior (pp. 263–282 ). New York: Plenum.

    Google Scholar 

  47. Davis, W.J., Kovac, M.P. (1981). The command neuron and the organization of movement. Trends in Ne urosciences, 4, 73–76.

    Google Scholar 

  48. Davis, W.J., Siegler, M.V.S., Mpitsos, G.J. (1973). Distributed neuronal oscillators and efference copy in the feeding system of Pleurobranchaea. Journal of Neurophysiology, 36, 258–274.

    Google Scholar 

  49. Davis, W.J., Kovac, M.P., Croll, R.P., Matera, E.M. (1984). Brain oscillators) underlying rhythmic cerebral and buccal motor output in the mollusc, Pleurobranchaea californica. Journal of Experimental Biology, 110, 1–15.

    Google Scholar 

  50. Delcomyn, F. (1980). Neural basis of rhythmic behavior in animals. Science, 210, 492–498.

    PubMed  Google Scholar 

  51. Desmedt, J.E., Godaux, E. (1978). Ballistic skilled movements: Load compensation and patterning of the motor commands. In T.E. Desmedt (Ed.), Cerebral control in man: Long loop mechanisms: Vol. 4. Progress in Clinical Neurophysiology (pp. 21–55 ). Basel: Karger.

    Google Scholar 

  52. Doherty, J.A., Gerhardt, H.C. (1983). Hybrid treefrogs: Vocalizations of males and selective phonotaxis of females. Science, 220, 1078–1080.

    Google Scholar 

  53. Dumont, J.P.C., Robertson, R.M. (1986). Neuronal circuits: An evolutionary perspective. Science, 233, 849–853.

    Google Scholar 

  54. Eaton, J.P.C. (Ed.). (1984). Neural mechanisms of startle behavior. New York: Plenum.

    Google Scholar 

  55. Eaton, R.C., Hackett, J.T. (1984). The role of the Mauthner cell in fast starts involving escape in teleost fishes. In R.C. Eaton (Ed.), Neural mechanisms of startle behavior (pp. 213–266 ). New York: Plenum.

    Google Scholar 

  56. Egelhaaf, M. (1987). Dynamic properties of two control systems underlying visually guided turning in houseflies. Journal of Comparative Physiology. A. Sensory, Neural, and Behavioral Physiology, 161, 777–783.

    Google Scholar 

  57. Eibl–Eibesfeldt, I. (1970). Ethology: The biology of behavior. New York: Holt, Rinehart Winston.

    Google Scholar 

  58. Eisemann, C.H., Jorgensen, W.K., Merritt, D.J., Rice, MJ., Cribb, B.W., Webb, P.D., Zalucki, M.P. (1984). Do insects feel pain?A biological view. Experientia, 40, 164–167.

    Google Scholar 

  59. Elliott, C.J.H., Koch, U.T. (1985). The clockwork cricket. Naturwissenschaften, 72, 150.

    Google Scholar 

  60. Evarts, E.V. (1966). Pyramidal tract activity associated with a conditioned hand movement in the monkey. Journal of Neurophysiology, 29, 1011–1027.

    PubMed  Google Scholar 

  61. Evarts, E.V. (1968). Relation of pyramidal tract activity to force exerted during voluntary movement. Journal of Neurophysiology, 31, 14–27.

    PubMed  Google Scholar 

  62. Evarts, E.V., Tanji, J. (1976). Reflex and intended responses in motor cortex pyramidal tract neurons of monkeys. Journal of Neurophysiology, 39, 1069–1080.

    Google Scholar 

  63. Evoy, W.H., Ayers, J. (1982). Locomotion and control of limb movements. In D.C. Sanderman, H.L. Atwood (Eds.), The biology of Crustacea: Vol. 4. Neural integration and behavior (pp. 61–105 ). New York: Academic.

    Google Scholar 

  64. Feldman, A.G. (1974a). Change of muscle length due to shift of the equilibrium point of the muscle load system. Biophysics, 19, 544–548.

    Google Scholar 

  65. Feldman, A.G. (1974b). Control of muscle length. Biophysics, 19, 766–771.

    Google Scholar 

  66. Fields, H.L. (1976). Crustacean abdominal and thoracic muscle receptor organs. In P.J. Mill (Ed.), Structure and function of proprioceptors in the invertebrates (pp. 65–114 ). London: Chapman and Hall.

    Google Scholar 

  67. Fields, H.L., Evoy, W.H., Kennedy, D. (1967). Reflex role played by efferent control of an invertebrate stretch receptor. Journal of Neurophysiology, 30, 859–874.

    Google Scholar 

  68. Flanders, M., Cordo, P.J., Ansom, J.G. (1986). Interaction between visually and kinesthetically triggered voluntary response. Journal of Motor Behavior, 18, 427–448.

    Google Scholar 

  69. Forssberg, H. (1979). “The stumbling correction reaction” -a phase-dependent compensatory reaction during locomotion. Journal of Neurophysiology, 42, 936–953.

    Google Scholar 

  70. Fraser, P.J. (1982). Views on the nervous control of complex behavior. In D.C. Sandeman, H.L. Atwood (Eds.), The biology of the Crustacea: Vol. 4. Neural integration and behavior (pp. 293– 319 ). New York: Academic.

    Google Scholar 

  71. Friesen, W.O. (1985). Neuronal control of leech swimming movements: Interactions between cell 60 and previously described oscillator neurons. Journal of Comparative Physiology. A, Sensory, Neural, and Behavioral Physiology, 156, 231 –242.

    Google Scholar 

  72. Friesen, W.O., Stent, G.S. (1977). Generation of a locomotory rhythm by a neural network with recurrent cyclic inhibition. Biological Cybernetics, 28, 27–40.

    Google Scholar 

  73. Friesen, W.O., Poon, M., Stent, G.S. (1976). An oscillatory neuronal circuit generating a locomotory rhythm. Proceedings of the National Academy of Sciences of the United States of America, 73, 3734–3738.

    Google Scholar 

  74. Friesen, W.O., Poon, M., Stent, G.S. (1978). Neuronal control of swimming in the medicinal leech. IV. Identification of a network with recurrent cyclic inhibition. Journal of Experimental Biology, 75, 24–43.

    Google Scholar 

  75. Furakawa, T., Furshpan, E.J. (1963). Two inhibitory mechanisms in the Mauthner cell of goldfish. Journal of Neurophysiology, 26, 140–176.

    Google Scholar 

  76. Getting, P.A. (1983). Mechanisms of pattern generation underlying swimming in Tritonia. HI. Intrinsic and synaptic mechanisms for delayed excitation. Journal of Neurophysiology, 49, 1036–1050.

    Google Scholar 

  77. Getting. P.A. (1984). Neural control of behavior in gastropods. In A.O.D. Willows (Ed.), The mollusca: Vol. 8. Neurobiology and behavior: Part 1 (pp. 269–334 ). Orlando: Academic.

    Google Scholar 

  78. Getting, P.A., Dekin, M.S. (1985). Tritonia swimming: A model system for integration within rhythmic motor systems. In A.I. Selverston (Ed.), Model neural networks and behavior (pp. 3–20 ). New York: Plenum.

    Google Scholar 

  79. Getting, P.A., Lennard, P.R., Hume, R.I. (1980). Central pattern generator mediating swimming in Tritonia. I. Identification and synaptic interactions. Journal of Neurophysiology, 44, 151–164.

    Google Scholar 

  80. Gillette, R., Davis, W.J. (1977). The role of the metacerebral giant neuron in the feeding behavior of Pleurobranchaea. Journal of Comparative Physiology. A, Sensory, Neural, and Behavioral Physiology, 116, 129–159.

    Google Scholar 

  81. Gillette, R., Kovac, M.P., Davis, W.J. (1978). Command neurons in Pleurobranchaea receive synaptic output from the motor network they excite. Science, 199, 798–801.

    Google Scholar 

  82. Gillette, R., Gillette, M., Davis, W.J. (1980). Action-potential broadening and endogenously sustained bursting are substrates of command ability in a feeding neuron of Pleurobranchaea. Journal of Neurophysiology, 43, 669–685.

    Google Scholar 

  83. Gillette, R., Gillette, M.U., Davis, W.J. (1982). Control of feeding motor output by paracerebral neurons in the brain of Pleurobranchaea. Journal of Neurophysiology, 47, 885–908.

    PubMed  Google Scholar 

  84. Glickstein, M. (1972). Brain mechanisms in reaction time. Brain Research 40, 33–37.

    PubMed  Google Scholar 

  85. Goss-Custard, J.D., Durell, S.E.A. le V. dit (1987). Age-related effects in oystercatchers, Haematopus ostralegus, feeding on mussels, My til us edulis. I. Foraging efficiency and interference. Journal of Animal Ecology, 56, 521–536.

    Google Scholar 

  86. Gottlieb, G.L., Agarwall, D.C. (1980). Response to sudden torques about ankle in man. III. Suppression of stretch-evoked responses during phasic contraction. Journal of Neurophysiology, 44, 233– 246.

    Google Scholar 

  87. Gould, J.L. (1984). Natural history of honey bee learning. In P. Marler H.S. Terrace (Eds.), The biology of learning (pp. 149–180 ). Berlin, Heidelberg, New York: Springer.

    Google Scholar 

  88. Gould, J.L., Gould, C.G. (1982). The insect mind: Physics or metaphysics? In D.R. Griffin (Ed.), Animal mind Human mind (pp. 269–297 ). Berlin, Heidelberg, New York: Springer.

    Google Scholar 

  89. Graham, D. (1977). Simulation of a model for the coordination of leg movement in frewalking insects. Biological Cybernetics, 26, 187–198.

    Google Scholar 

  90. Graham, D. (1985). Pattern and control of walking in insects. Advances in Insect Physiology, 18, 31– 140.

    Google Scholar 

  91. Granit, R. (1970). The basis of motor control. London: Academic.

    Google Scholar 

  92. Graubard, K., Calvin, W.H. (1979). Presynaptic dendrites: Implications of spikeless transmission and dendritic geometry. In F.O. Schmitt F.G. Worden (Eds.), The neurosciences fourth study program (pp. 317–331 ). Cambridge, MA: MIT Press.

    Google Scholar 

  93. Gray, J. (1950). The role of peripheral sense organs during locomotion in the vertebrates. Symposia of the Society for Experimental Biology, 4, 112–126.

    Google Scholar 

  94. Griffin, D.R. (Ed.). (1982). Animal mind Human mind. Berlin, Heidelberg, New York: Springer.

    Google Scholar 

  95. Grillner, S. (1977). On the neural control of movement A comparison of different rhythmic behaviors. In G.S. Stent (Ed.), Function and formation of neural systems (Dahlem Konferenzen, pp. 197–224 ). Berlin, Heidelberg, New York: Springer.

    Google Scholar 

  96. Grillner, S. (1981). Control of locomotion in bipeds, tetrapods, and fish. In V.B. Brooks (Ed.), Handbook of physiology: Sec. 1. The nervous system: Vol. 2. Motor control. (American Physiological Society Series, pp. 1179–1236 ). Baltimore: Williams and Wilkins.

    Google Scholar 

  97. Grillner, S. (1985). Neurobiological bases of rhythmic motor acts in vertebrates. Science, 228, 143– 149.

    Google Scholar 

  98. Grillner, S., Wallen, P. (1985). General pattern generators for locomotion, with special reference to vertebrates. Annual Review of Neurdscience, 8, 233–261.

    Google Scholar 

  99. Grillner, S., McQellan, A., Perret, C. (1981). Entrainment of the spinal pattern generators for swimming by mechanosensitive elements in the lamprey spinal cord in vitro. Brain Research, 277, 380– 386.

    Google Scholar 

  100. Grillner, S., Wallen, P., Dale, N., Brodin, L., Buchanan, J., Hill, R. (1987). Transmitters, membrane properties and network circuitry in the control of locomotion in lamprey. Trends in Neurosciences, 10, 34–41.

    Google Scholar 

  101. Gustafsson, B., Wigstrom, H. (1988). Physiological mechanisms underlying long–term potentiation. Trends in Neurosciences, 11, 156–162.

    Google Scholar 

  102. Gynther, I.C., Pearson, K.G. (1986). Intracellular recordings from intemeurones and motoneurones during bilateral kicks in the locust: Implications for mechanisms controlling the jump. Journal of Experimental Biology, 122, 323–343.

    Google Scholar 

  103. Hassan, E.–S. (1986). On the discrimination of spatial intervals by the blind cave fish Anoptichthys jordani. Journal of Comparative Physiology. A, Sensory, Neural, and Behavioral Physiology, 159, 701–710.

    Google Scholar 

  104. Hawkins, R.D., Abrams, T.W., Carew, T.J., Kandel, E.R. (1983). A cellular mechanism of classical conditioning in Aplysia: Activity dependent amplification of presynaptic facilitation. Science, 219, 400–405.

    Google Scholar 

  105. Hebb, D.O. (1949). The organization of behavior. New York: Wiley.

    Google Scholar 

  106. Heinrich, B. (1984). Learning in invertebrates. In P. Marler H.S. Terrace (Eds.), The biology of learning (pp. 135–147 ). Berlin, Heidelberg, New York: Springer.

    Google Scholar 

  107. Heinzel, H. G. (1988). Gastric mill activity in the lobster. I. Spontaneous modes of chewing. Journal of Neurophysiology, 59, 528–550.

    Google Scholar 

  108. Heisenberg, M., Wolf, R. (1979). On the fine structure of yaw torque in visual flight orientation of Drosophila melanogaster. Journal of Comparative Physiology, 130, 113–130.

    Google Scholar 

  109. Heitler, W.J. (1978). Coupled motoneurons are part of the crayfish swimmeret central oscillator. Nature, 275, 231–233.

    PubMed  Google Scholar 

  110. Henneman, E. (1980). Organization of the spinal cord and its reflexes. In V.B. Mountcastle (Ed.), Medical physiology (14th ed., pp. 762–786, Vol. 1 ). St Louis: Mosby.

    Google Scholar 

  111. Hisada, M., Takahata, M., Nagayama, T. (1984). Structure and output connection of local non spiking interneurons in crayfish. Zoological Science, 1, 41–49.

    Google Scholar 

  112. Hodgkin, A.L., Huxley, A.F. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. Journal of Physiology, 117, 500–544.

    Google Scholar 

  113. Hodos, W. (1982). Some perspectives on the evolution of intelligence and the brain. In D.R. Griffin (Ed.), Animal mind Human mind (pp. 33–55 ). Berlin, Heidelberg, New York: Springer.

    Google Scholar 

  114. Horsmann, U., Heinzel, H. G., Wendler, G. (1983). The phasic influence of self generated air current modulations on the locust flight motor. Journal of Comparative Physiology, 150, 427–438.

    Google Scholar 

  115. Houk, J.C., Rymer, W.Z. (1981). Neural control of muscle length and tension. In V.B. Brooks (Ed.), Handbook of physiology, Sec. 1. The nervous system: Vol. 2. Motor control (American Physiological Society Series, pp. 257–323 ). Baltimore: Williams and Wilkins.

    Google Scholar 

  116. Hoy, R.R., Paul, R.C. (1973). Genetic control of song specificity in crickets. Science, 180, 82–83.

    Google Scholar 

  117. Hoy, R.R., Nolen, T.G., Casady, G.C. (1985). Dendritic sprouting and compensatory synaptogenesis in an identified interneuron follow auditory deprivation in a cricket. Proceedings of the National Academy of Sciences of the United States of America, 82, 7772–7776.

    Google Scholar 

  118. Hoyle, G. (1964). Exploration of neuronal mechanisms underlying behavior in insects. In R.F. Reiss (Ed.), Neural theory and modelling (pp. 346–376 ). Stanford: Stanford University Press.

    Google Scholar 

  119. Hoyle, G. (1970). Cellular mechanisms underlying behavior: Neuroethology. Advances in Insect Physiology, 7, 349–444.

    Google Scholar 

  120. Hoyle, G. (1975). Identified neurons and the future of neuroethology. Journal of Experimental Zoology, 794, 51–74.

    Google Scholar 

  121. Hunt, C.C., Perl, E.R. (1960). Spinal reflex mechanisms concerned with skeletal muscle. Physiological Review, 40, 538–579.

    Google Scholar 

  122. Jellies, J., Larimer, J.L. (1986). Activity of crayfish abdominal positioning interneurons during spontaneous and sensory evoked movements. Journal of Experimental Biology, 120, 173–188.

    Google Scholar 

  123. Kalmijn, A J. (1984). Theory of electromagnetic orientation: A further analysis. In L. Bolis, R.D. Keynes, S.H.P. Maddrell (Eds.), Comparative physiology of sensory systems (pp. 525–560 ). Cambridge: Cambridge University Press.

    Google Scholar 

  124. Kandel, E.R. (1979). Behavioral biology of Aplysia. San Francisco: Freeman.

    Google Scholar 

  125. Kandel, E.R., Schwartz, J.H. (1982). Molecular biology of learning: modulation of transmitter release. Science, 218, 433–443.

    Google Scholar 

  126. Kandel, E.R., Schwartz, J.H. (Eds.). (1986). Principles of neural science. New York: Elsevier.

    Google Scholar 

  127. Kandel, E.R., Spencer, W.A. (1968). Cellular approaches to the study of learning. Physiological Review, 48, 65–134.

    Google Scholar 

  128. Kater, S.B. (1974). Feeding in Helisoma trivolvis: The morphological and physiological basis of a fixed action pattern. American Zoologist, 14, 1017–1036.

    Google Scholar 

  129. Kelly, D.B. (1986). A motor theory of song perception. Trends in Neurosciences, 9, 149–150.

    Google Scholar 

  130. Kelso, J.A.S., Holt, K.G. (1980). Exploring a vibratory systems analysis of human movement production. Journal of Neurophysiology, 43, 1183–1196.

    Google Scholar 

  131. Kennedy, D. (1976). Neural elements in relation to network function. In J.C. Fentress (Ed.), Simpler networks and behavior (pp. 65–81 ). Sunderland, MA: Sinauer.

    Google Scholar 

  132. Kennedy, J.S. (1966). Some outstanding questions in insect behavior. In P.T. Haskell (Ed.), Insect behaviour. Symposium of the Royal Entomological Society of London, 3, 97–112.

    Google Scholar 

  133. Klarner, D„ Barnes, W.J.P. (1986). The cuticular stress detector (CSD2) of the crayfish. II. Activity during walking and influence on leg coordination. Journal of Experimental Biology, 122, 161–175.

    Google Scholar 

  134. Koshland, D.E., Jr. (1980). Bacterial chemotaxis as a model behavioral system. New York: Raven.

    Google Scholar 

  135. Kovac, M.P., Davis, W.J. (1980a). Reciprocal inhibition between feeding and withdrawal behaviors in Pleurobranchaea. Journal of Comparative Physiology. A, Sensory, Neural, and Behavioral Physiology, 139, 77–86.

    Google Scholar 

  136. Kovac, M.P., Davis, W.J. (1980b). Neural mechanism underlying behavioral choice in Pleurobranchaea. Journal of Neurophysiology, 43, 469–487.

    Google Scholar 

  137. Kuffler, S.W., Nicholls, J.G. (1976). From neuron to brain. Sunderland, MA: Sinauer.

    Google Scholar 

  138. Kupfermann, I., Weiss, K.R. (1978). The command neuron concept. Behavioural Brain Science, 1, 3– 39.

    Google Scholar 

  139. Kyriacou, C.P., Hall, J.C. (1986). Interspecific genetic control of courtship song production and reception in Drosophila. Science 232, 494–497.

    Google Scholar 

  140. Lee, D.N. (1976). A theory of visual control of braking based on information about time to collision. Perception, 5, 437–459.

    PubMed  Google Scholar 

  141. Lee, D.N., Young, D.S. (1986). Gearing action to the environment. In H. Heuer C. Fromm (Eds.), Generation and modulation of action patterns (Experimental Brain Research Series No. 15, pp. 217–230 ). Berlin, Heidelberg, New York, Tokyo: Springer

    Google Scholar 

  142. Lewis, A.C. (1986). Memory constraints and flower choice in Pieris rapae. Science, 232, 863–865.

    Google Scholar 

  143. Lewis, E.R. (1968). Using electronic circuits to model simple neuro-electric interactions. IEEE Proceedings, 56, 931–949.

    Google Scholar 

  144. Lindberg, D., Eisner, N. (1977). Sensory influence upon grasshopper stridulation. Naturwissenschaften, 64, 342–343.

    Google Scholar 

  145. Marder, E., Hooper, S.L. (1985). Neurotransmitter modulation of the stomatogastric ganglion of decapod crustacians. In A.I. Selverston (Ed.), Model neural networks and behavior (pp. 319–337 ). New York: Plenum.

    Google Scholar 

  146. Mathews, P.B.C. (1972). Mammalian muscle receptors and their central actions. London: Arnold.

    Google Scholar 

  147. Mathews, P.B.C. (1981). Muscle spindles: Their messages and their fusimotor supply. In V.B. Brooks (Ed.), Handbook of physiology: Sect. 1. The nervous system: Vol. 2. Motor control (American Physiological Society Series, pp. 189–228 ). Baltimore: Williams and Wilkins.

    Google Scholar 

  148. Mathews, P.B.C. (1985). Human long latency stretch reflexes A new role for the secondary ending of the muscle spindle? In W.J.P. Barnes M.H. Gladden (Eds.), Feedback and motor control in invertebrates and vertebrates (pp. 431 –449). London: Croom Helm.

    Google Scholar 

  149. Mayeri, E., Rothman, B.S. (1985). Neuropeptides and the control of egg laying behavior in Aplysia. In A.I. Selverston (Ed.), Model neural networks and behavior (pp. 285–301 ). New York: Plenum.

    Google Scholar 

  150. Maynard, D.M. (1972). Simpler networks. Annals of the New York Academy of Sciences, 193, 59–72.

    PubMed  Google Scholar 

  151. McClennan, A.D. (1982). Movements and motor patterns of the buccal mass of Pleurobranchaea during feeding, regurgitation and rejection. Journal of Experimental Biology, 98, 195–211.

    Google Scholar 

  152. McCloskey, D.I. (1981). Corollary discharges: motor commands and perception. In V.B. Brooks (Ed.), Handbook of physiology, Sec. 1. The nervous system: Vol. II, Part 2 (American Physiological Society Series, pp. 1415–1447 ). Baltimore: Williams and Wilkins.

    Google Scholar 

  153. McCrohan, C.R., Benjamin, P.R. (1980). Synaptic relationships of the cerebral giant cells with motoneurons in the feeding system of Lymnaea stagnalis. Journal of Experimental Biology, 85, 169– 186.

    Google Scholar 

  154. McCulloch, W.S., Pitts, W. (1943). A logical calculus of the ideas immanent in nervous activity. B ulle tin of Mathematical Biophysics, 5, 115–133.

    Google Scholar 

  155. McMahon, T.A. (1984). Muscles, reflexes, and locomotion. Princeton: Princeton University Press.

    Google Scholar 

  156. Mendelson, M. (1971). Oscillator neurons in crustacean ganglia. Science, 171, 1170–1173.

    PubMed  Google Scholar 

  157. Menzel, R., Erber, J. (1978). Learning and memory in bees. Scientific American, 239, 80–87.

    Google Scholar 

  158. Merton, P.A. (1953). Speculations on the servo control of movement. In G.E.W. Wolstenholme (Ed.), The spinal cord (pp. 247–255 ). London: Churchill.

    Google Scholar 

  159. Meyer, D.E., Smith, J.E.K., Wright, C.E. (1982). Models for the speed and accuracy of aimed movements. Psychological Review, 89, 449–482.

    Google Scholar 

  160. Miller, J.P., Selverston, A.I. (1985). Neural mechanisms for the production of the lobster pyloric motor pattern. In A.I. Selverston (Ed.), Model neural networks and behavior (pp. 37–48 ). New York: Plenum.

    Google Scholar 

  161. Mimura, K. (1986). Development of visual pattern discrimination in the fly depends on light experience. Science, 232, 83–85.

    PubMed  Google Scholar 

  162. Mittelstaedt, H. (1951). Zur Analyse physiologischer Regelungssysteme. Verhandlungen der Deutschen Zoologischen Gesellschaft, 45, 150–157.

    Google Scholar 

  163. Mittelstaedt, H. (1962). Control systems of orientation in insects. Annual Review of Entomology, 7, 177– 198.

    Google Scholar 

  164. Möhl, B. (1985). Sensory aspects of flight pattern generation in the locust. In M. Gewecke G. Wendler (Eds.), Insect locomotion (pp. 139–148 ). Berlin: Parey.

    Google Scholar 

  165. Morasso, P. (1981). Spatial control of arm movements. Experimental Brain Research, 42, 223–227.

    Google Scholar 

  166. Nichols, T.R., Houk, J.C. (1976). The improvement in linearity and the regulation of stiffness that results from the stretch reflex. Journal of Neurophysiology, 39, 119–142.

    Google Scholar 

  167. Noble, D. (1985). Ionic mechanisms in rhythmic firing of heart and nerve. Trends in Neuroseiences, 89, 499–507.

    Google Scholar 

  168. Nusbaum, M.P., Kristan, W.B. (1986). Swim initiation in the leech by serotonin–containing interneurons, cells 21 and 61. Journal of Experimental Biology, 122, 277–302.

    Google Scholar 

  169. Olson. G.C., Krasne, F.B. (1981). The crayfish lateral giants are command neurons for escape behavior. Brain Research, 214, 89–100.

    Google Scholar 

  170. Partridge, L.D., Benton, L.A. (1981). Muscle, the motor. In V.B. Brooks (Ed.), Handbook of physiology: Sec. 1. The nervous system: Vol. 2. Motor control (American Physiological Society Series, pp. 43–106 ). Baltimore: Williams and Wilkins.

    Google Scholar 

  171. Pearson, K.G. (1972). Central programming and reflex control of walking in the cockroach. Journal of Experimental Biology, 56, 173–193.

    Google Scholar 

  172. Pearson, K.G. (1976). Nerve cells without action potentials. In J.C. Fentress (Ed.), Simpler networks and behavior (pp. 99–110 ). Sunderland, MA: Sinauer.

    Google Scholar 

  173. Pearson, K.G. (1979). Local neurons and local interactions in the nervous systems of invertebrates. In F.O. Schmitt F.G. Worden (Eds.), The neurosciences fourth study program (pp. 145–157 ). Cambridge, MA: MIT Press.

    Google Scholar 

  174. Pearson, K.G. (1981). Function of sensory input in insect motor systems. Canadian Journal of Physiology and Psychology, 59, 660–666.

    Google Scholar 

  175. Pearson, K.G., Heitler, W.J., Steeves, J.D. (1980). Triggering of locust jump by multimodal inhibitory interneurons. Journal of Neurophysiology, 43, 257–278.

    Google Scholar 

  176. Pearson, K.G., Wong, R.K.S., Fourtner, C.R. (1976). Connexions between hair plate afferents and motoneurons in the cockroach leg. Journal of Experimental Biology, 64, 251–266.

    Google Scholar 

  177. Perkel, D.H. (1970). Spike trains as carriers of information. In F.O. Schmitt (Ed.), The neurosciences second study program (pp. 587–596 ). New York: Rockefeller University Press.

    Google Scholar 

  178. Pinsker, H.M., Ayers, J. (1983). Neuronal oscillators. In W.D. Ellis (Ed.), The clinical neurosciences (Vol 5, pp. 203–266 ). New York: Churchill Livingstone.

    Google Scholar 

  179. Polit, A., Bizzi, E. (1979). Characteristics of motor programs underlying ami movements in monkeys. Journal of Neurophysiology, 42, 725–744.

    Google Scholar 

  180. Poon, M., Friesen, W.O., Stent, G.S. (1978). Neuronal control of swimming in the medicinal leech. V. Connections between the oscillatory interneurons and the motor neurons. Journal of Experimental Biology, 75, 45–63.

    Google Scholar 

  181. Pringle, J.W.S. (1957). Insect flight. Cambridge: Cambridge University Press.

    Google Scholar 

  182. Prochazka, A. (1981). Muscle spindle function during normal movement. In R. Porter (Ed.), International Review of Physiology, 25, 47–90.

    Google Scholar 

  183. Prochazka, A. (1985). Central control of sense organ excitability: introduction. In W.J.P. Barnes M.H. Gladden (Eds.), Feedback and motor control in invertebrates and vertebrates (pp. 115–121 ). London: Croom Helm.

    Google Scholar 

  184. Pulst, S.M., Gusman, D., Rothman, B.S., Mayeri, E. (1986). Coexistence of egg laying hormone and alpha bag cell peptide in bag cell neurons of Aplysia indicates that they are a peptidergic multi transmitter system. Neuroscience Letters, 70, 40–45.

    Google Scholar 

  185. Quinn, W.G. (1984). Work in invertebrates on the mechanisms underlying learning. In P. Marler H.S. Terrace (Eds.), The biology of learning (pp. 197–246 ). Berlin, Heidelberg, New York: Springer.

    Google Scholar 

  186. Reichardt, W. (1979). Functional characterization of neural interactions through an analysis of behavior. In F.O. Schmitt F.G. Worden (Eds.), The neurosciences fourth study program (pp. 81–103 ). Cambridge, MA: MIT Press.

    Google Scholar 

  187. Reichert, H., Rowell, C.H.F. (1985). Integration of nonphase locked exteroceptive information in the control of rhythmic flight in the locust. Journal of Neurophysiology, 55, 1201–1218.

    Google Scholar 

  188. Reichert, H., Rowell, C.H.F., Griss, C. (1985). Course correction circuitry translates feature detection into behavioural action in locusts. Nature, 315, 142–144.

    Google Scholar 

  189. Roberts, T.D.M. (1967). Neurophysiology of postural mechanisms. London: Butterworth.

    Google Scholar 

  190. Roeder, K.D. (1937). The control of tonus and locomotor activity in the praying mantis ( Mantis religiosa L. ). Journal of Experimental Zoology, 76, 353–374.

    Google Scholar 

  191. Roeder, K.D. (1967). Nerve cells and insect behavior. Cambridge, MA: Harvard University Press.

    Google Scholar 

  192. Russell, D.F., Hartline, D.K. (1978). Bursting neural networks: A reexamination. Science, 200, 453– 456.

    Google Scholar 

  193. Sahley, C.L. (1984). Behavior theory and invertebrate learning. In P. Marler H.S. Terrace (Eds.), The biology of learning (pp. 181–196 ). Berlin, Heidelberg, New York, Tokyo: Springer.

    Google Scholar 

  194. Sakitt, B. (1980). A spring model and equivalent neural network for arm position control. Biological Cybernetics, 37, 227–234.

    PubMed  Google Scholar 

  195. Sanders, G.D. (1975). Octopus learning. In W.C. Coming, J.A. Dyal, A.O.D. Willows (Eds.), Invertebrate learning (pp. 1–101 ). New York: Plenum.

    Google Scholar 

  196. Schildberger, K., Wohlers, D.W., Schmitz, B. (1986). Morphological and physiological changes in central auditory neurons following unilateral foreleg amputation in larval crickets. Journal of Comparative Physiology. A Sensory, Neural, and Behavioral Physiology, 158, 291–300.

    Google Scholar 

  197. Schmidt, R.A. (1982). Motor control and learning. Champaign, IL: Human Kinetics.

    Google Scholar 

  198. Schmidt, R.A., McGown, C. (1980). Terminal accuracy of unexpectedly loaded rapid movements: Evidence for a mass spring mechanism in programming. Journal of Motor Behavior, 12, 149–161.

    Google Scholar 

  199. Selverston, A.I. (1980). Are central pattern generators understandable? Behavioral Brain Science, 3, 535–571.

    Google Scholar 

  200. Seyfarth, E.A. (1978). Lyriform slit sense organs and muscle reflexes in the spider leg. Journal of Comparative Physiology, 125, 45–57.

    Google Scholar 

  201. Shepherd, G.M. (1979). Functional analysis of local circuits in the olfactory bulb. In F.O. Schmitt F.G. Worden (Eds.), The neurosciences fourth study program (pp. 129–143 ). Cambridge, MA: MTT Press.

    Google Scholar 

  202. Sherrington, C.S. (1906). The integrative action of the nervous system. New Haven: Yale University Press.

    Google Scholar 

  203. Sigvardt, K.A., Rothman, B.S., Brown, R.O., Mayer, E. (1986). The bag cells of Aplysia as a multi transmitter system: Identification of alpha bag cell peptide as a second neurotransmitter. Journal of Neuroscience, 6, 803–813.

    Google Scholar 

  204. Sillar, K.T., Elson, R.C. (1986). Slow active potentials in walking leg motor neurons triggered by non spiking proprioceptive afferents in the crayfish. Journal of Experimental Biology, 126, 445– 452.

    Google Scholar 

  205. Sillar, K.T., Skorupski, P. (1986). Central input to primary afferent neurons in crayfish, Pacifastacus leniusculus, is correlated with rhythmic motor output of thoracic ganglia. Journal of Neurophysiology, 55, 678–688.

    Google Scholar 

  206. Sillar, K.T., Skorupski, P., Elson, R.C., Bush, B.M.H. (1986). Two identified afferent neurones entrain a central locomotor rhythm generator. Nature, 323, 440–443.

    Google Scholar 

  207. Sittig, A.C., Denier van der Gon, J.J., Giellen, C.C.A.M. (1985). Separate control of arm position and velocity demonstrated by vibration of muscle tendon in man. Experimental Brain Research, 60, 445–453.

    Google Scholar 

  208. Skorupski, P., Sillar, K.T. (1986). Phase dependent reversal of reflexes mediated by the thoracocoxal muscle receptor organ in the crayfish, Pacifastacus leniusculus. Journal of Neurophysiology, 55, 689–695.

    Google Scholar 

  209. Snyder, S.H. (1980). Brain peptides as neurotransmitters. Science, 209, 976–983.

    PubMed  Google Scholar 

  210. Sperry, R.W. (1950). Neural basis of the spontaneous optokinetic response produced by visual inversion. Journal of Comparative and Physiological Psychology, 43, 482–489.

    PubMed  Google Scholar 

  211. Stein, P.G.S. (1978). Motor systems, with specific reference to the control of locomotion. Annual Review ofNeuroscience, 1, 61–81.

    Google Scholar 

  212. Stein, R.B. (1974). The peripheral control of movement. Physiological Review, 54, 215–243.

    Google Scholar 

  213. Stein, R.B. (1982). What muscle variable(s) does the nervous system control in limb movements? Behavioral Brain Science, 5, 535–577.

    Google Scholar 

  214. Sulston, J.E. (1983). Neuronal cell lineages in the nematode Caenorhabditis elegans. Cold Spring Harbor Symposia on Quantitative Biology, 48, 443–452.

    PubMed  Google Scholar 

  215. Szekely, G. (1968). Development of limb movements: Embryological, physiological and model studies. In G.E.W. Wolstenholme M. O’Connor (Eds.), Growth of the nervous system. Ciba Foundation Symposium, 77–95.

    Google Scholar 

  216. Thüring, D.A. (1986). Variability of motor output during flight steering in locusts. Journal of Comparative Physiology, 158, 653–664.

    Google Scholar 

  217. Tinbergen, N. (1951). The study of instinct. London: Oxford University Press.

    Google Scholar 

  218. Tully, T., Quinn, W.G. (1985). Qassical conditioning and retention in normal and mutant Drosophila melanogaster. Journal of Comparative Physiology. A, Sensory, Neural, and Behavioral Physiology, 157, 263–277.

    Google Scholar 

  219. Turvey, M.T. (1977). Preliminaries to a theory of action with reference to vision. In R. Shaw J. Bransford (Eds.), Perceiving, acting and knowing: toward an ecological psychology (pp. 211–265 ). Hillsdale, NJ: Erlbaum.

    Google Scholar 

  220. Vallbo, A.B. (1971). Muscle spindle response at the onset of isometric voluntary contractions in man. Time difference between fusimotor and skeletomotor effects. Journal of Physiology, 218, 405–431.

    Google Scholar 

  221. Vallbo, A.B., Hagbarth, K.–E., Torebjörk, H.E. (1979). Somatosensory, proprioceptive, and sympathetic activity in human peripheral nerves. Physiological Review, 59, 919–957.

    Google Scholar 

  222. von Holst, E. (1935). Die Koordination der Bewegung bei den Arthropoden in Abhängigkeit von zentralen und peripheren Bedingungen. Biological Review, 10, 234–261.

    Google Scholar 

  223. von Holst, E. (1948). Von der Mathematik der nervösen Ordnungsleistungen. Experientia, 4, 374–381.

    PubMed  Google Scholar 

  224. von Holst, E., Mittelstaedt, H. (1950). Das Reafferenzprinzip. Naturwissenschaften, 37, 464–416.

    Google Scholar 

  225. Wagner, R. (1960). Über Regelung von Muskelkraft und Bewegungsgeschwindigkeit bei der Willkürbewegung. Zeitschrift für Biologie, 111, 449–479.

    Google Scholar 

  226. Weeks, J.C. (1981). Neuronal basis of leech swimming: Separation of swim initiation, pattern generation, and intersegmental coordination by selective lesions. Journal of Neurophysiology, 45, 698– 723.

    Google Scholar 

  227. Weeks, J.C. (1982a). Synaptic basis of swim initiation in the leech. I. Connections of a swiminitiating neuron (cell 204) with motor neurons and pattern generating ‘oscillator’ neurons. Journal of Comparative Physiology. A, Sensory, Neural, and Behavioral Physiology, 148, 253–263.

    Google Scholar 

  228. Weeks, J.C. (1982b). Synaptic basis of swim initiation in the leech. II. A pattern–generating neuron (cell 208) which mediates motor effects of swim initiating neurons. Journal of Comparative Physiology. A, Sensory, Neural, and Behavioral Physiology, 148, 265–279.

    Google Scholar 

  229. Weeks, J.C., Kristan, W.B., Jr. (1978). Initiation, maintenance and modulation of swimming in the medicinal leech by the activity of a single neuron. Journal of Experimental Biology, 77, 71–88.

    Google Scholar 

  230. Weiss, P. (1940). Self–differentiation of the basic patterns of coordination. Comparative Psychology Monographs, 17, 1–96.

    Google Scholar 

  231. Weiss Fogh, T. (1956). Biology and physics of locust flight. IV. Notes on sensory mechanisms in locust flight. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 239, 553–584.

    Google Scholar 

  232. Wendler, G. (1964). Laufen und Stehen der Stabheuschrecke Carausius morosus: Sinnesborstenfelder in den Beingelenken als Glieder von Regelkreisen. Zeitschrift für Vergleichende Physiologie, 48, 198–250.

    Google Scholar 

  233. Wendler, G. (1974). The influence of proprioceptive feedback on locust flight coordination. Journal of Comparative Physiology. A, Sensory, Neural, and Behavioral Physiology, 88, 173–200.

    Google Scholar 

  234. Wendler, G. (1985). Insect locomotory systems: control by proprioceptive and exteroceptive inputs. In M. Gewecke G. Wendler (Eds.), Insect locomotion (pp. 245–254 ). Hamburg: Parey.

    Google Scholar 

  235. White, J.G., Southgate, W.E., Thomson, J.N., Brenner, S. (1983). Factors that determine connectivity in the nervous system of Caenorhabditis elegans. Cold Spring Harbor Symposia on Quantitative Biology, 48, 633–640.

    Google Scholar 

  236. White, J.G., Southgate, W.E., Thomson, J.N., Brenner, S. (1986). The structure of the nervous system of the nematode Caenorhabditis elegans. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 314, 1–340.

    Google Scholar 

  237. Wiersma, C.A.G., Ikeda, K. (1964). Intemeurons commanding swimmeret movements in the crayfish. Procambarus clarkii ( Girard ). Journal of Comparative Neurology, 116, 209–228.

    Google Scholar 

  238. Wiesendanger, M. (1986a). Redistributive function of the motor cortex. Trends in Neurosciences, 9, 120–125.

    Google Scholar 

  239. Wiesendanger, M. (1986b). Initiation of voluntary movements and the supplementary motor area. In H. Heuer C. Fromm (Eds.), Generation and modulation of action patterns (Experimental Brain Research Series No. 15, pp. 3–13 ). Berlin, Heidelberg, New York, Tokyo: Springer.

    Google Scholar 

  240. Wiesendanger, M., Miles, T.S. (1982). Ascending pathway of low threshold muscle afferents to the cerebral cortex and its possible role in motor control. Physiological Review, 62, 1234–1270.

    Google Scholar 

  241. Willard, A.L. (1981). Effects of serotonin on the generation of the motor program for swimming by the medicinal leech. Journal ofNeuroscience, 7, 936–944.

    Google Scholar 

  242. Williams, H. Nottebohm, F. (1985). Auditory responses in avian vocal motor neurons: A motor theory for song perception in birds. Science, 229, 279–282.

    Google Scholar 

  243. Williamson, R.M., Roberts, B.L. (1986). Sensory and motor interactions during movement in the spinal dogfish. Proceedings of the Royal Society of London. Series B: Biological Sciences, 227, 103– 119.

    Google Scholar 

  244. Willows, A.O.D., Hoyle, G. (1969). Neuronal network triggering a fixed action pattern. Science, 166, 1549–1551.

    Google Scholar 

  245. Wilson, D.M. (1961). The central nervous control of flight in a locust. Journal of Experimental Biology, 381471–490.

    Google Scholar 

  246. Wilson, D.M. (1966). Insect walking. Annual Review of Entomology, 11, 102–123.

    Google Scholar 

  247. Wilson, D.M., Waldron, I. (1968). Models for the generation of the motor output pattern in flying locusts. IEEE Proceedings, 56y 1058–1064.

    Google Scholar 

  248. Wilson, J.A., Phillips, C.E. (1983). Pre–motor non–spiking intemeurons. Progress in Neurobiology, 20, 89–109.

    Google Scholar 

  249. Wine, J.J. (1984). The structural basis of an innate behavioural pattern. Journal of Experimental Biology, 772, 283–319.

    Google Scholar 

  250. Wolf, H., von Helversen, O. (1986). Switching–off of an auditory interneuron during stridulation in the acridid grasshopper Chorthippus biguttulus L. Journal of Comparative Physiology. A, Sensory Neural, and Behavioral Physiology, 158, 861–871.

    Google Scholar 

  251. Wong, R.K.S., Pearson, K.G. (1976). Properties of the trochanteral hair plate and its function in the control of walking in the cockroach. Journal of Experimental Biology, 64, 233–249.

    Google Scholar 

  252. Wright, B.R. (1976). Limb and wing receptors in insects, chelicerates and myriapods. In P.J. Mill (Ed.), Structure and function of proprioceptors in the invertebrates (pp. 323–386 ). London: Chapman and Hall.

    Google Scholar 

  253. Wyman, R.J., Thomas, J.B., Salkoff, L., Costello, W. (1985). The Drosophila thorax as a model system for neurogenetics. In A.I. Selverston (Ed.), Model neural networks and behavior (pp. 513– 535 ). New York: Plenum.

    Google Scholar 

  254. Young, J.Z. (1971). The anatomy of the nervous system of Octopus vulgaris. Oxford: Clarendon.

    Google Scholar 

  255. Zill, S.N., Moran, D.T. (1981a). . Journal of Experimental Biology, 91, 1–24.

    Google Scholar 

  256. Zill, S.N., Moran, D.T. (1981b). , Periplaneta americana. Journal of Experimental Biology, 94, 57–75.

    Google Scholar 

  257. Zill, S.N., Moran, D.T., Varela, F.J. (1981). The exoskeleton and insect proprioception. II. Reflex effects of tibial campaniform sensilla in the American cockroach, Periplaneta americana. Journal of Experimental Biology, 94, 43–55.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dean, J. (1990). The Neuroethology of Perception and Action. In: Neumann, O., Prinz, W. (eds) Relationships Between Perception and Action. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-75348-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-75348-0_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-75350-3

  • Online ISBN: 978-3-642-75348-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics