The Physiological Basis of the Act of Perceiving

  • B. Bridgeman

Abstract

The close interaction of perception and action, an organizing theme of this book, can be studied with a variety of methods. This chapter examines the physiological organization of the interaction, drawing material principally from the oculomotor system where the interplay of perception and action is particularly clear and easy to study. Analyzing the oculomotor system requires a reinterpretation of sensory physiology: the passive sensory systems must be replaced by active perceptual systems, so that the organism can combine sensory and motor sources to interpret the visual world.

Keywords

Neral Retina Dition Cataract Colchicine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, J.R. (1985). Cognitive psychology and its implications. New York: FreemanGoogle Scholar
  2. Bahill, A.T., Stark, L. (1975). The high-frequency burst of motoneuronal activity lasts about half the duration of saccadic eye movements. Mathematical Biosciences, 26, 319–323.CrossRefGoogle Scholar
  3. Blakemore, C., Cooper, G.F. (1970). Development of the brain depends on the visual environment. Nature, 228, 467–478.Google Scholar
  4. Bridgeman, B. (1977). Reply to Brooks and Fuchs: Exogenous and endogenous contributions to saccadic suppression. Vision Research, 17, 323–324.CrossRefGoogle Scholar
  5. Bridgeman, B. (1981). Cognitive factors in subjective stabilization of the visual world. Acta Psychologica, 48, 111–121.PubMedCrossRefGoogle Scholar
  6. Bridgeman, B., Palca, J. (1980). The role of microsaccades in high acuity observational tasks. Vision Research, 20, 813–817.Google Scholar
  7. Bridgeman, B. Hendry, D., Stark, L. (1975). Failure to detect displacement of the visual world during saccadic eye movements. Vision Research, 15, 719–722.Google Scholar
  8. Bridgeman, B., Lewis, S., Heit, G., Nagle, M. (1979). The relationship between cognitive and motor-oriented systems of visual position perception. Journal of Experimental Psychology: Human Perception and Performance, 5, 692–700.PubMedCrossRefGoogle Scholar
  9. Bridgeman, B., Kirch, M., Sperling, A. (1981). Segregation of cognitive and motor aspects of visual function using induced motion. Perception and Psychophysics, 29, 336–342.Google Scholar
  10. Brune, F., Lucking, C.H. (1969). Oculomotorik, Bewegungswahrnehmung und Raumkonstanz der Sehdinge. Der Nervenarzt, 40, 413–421.Google Scholar
  11. Burbeck, C., Kelly, D.H. (1982). A mechanism in the distal retina that accounts for the fading of stabilized images. Investigative Ophthalmology and Visual Science, 22 ( Suppl.), 50.Google Scholar
  12. Clark, M.R., Stark, L. (1975). Time optimal behavior of human saccadic eye movement. IEEE Transactions on Automatic Control, 20, 345–348.Google Scholar
  13. Collewijn, H. (1969). Changes in visual evoked responses during the fast phase of optokinetic nystagmus in the rabbit. Vision Research, 9, 803–814.PubMedCrossRefGoogle Scholar
  14. Crawford, M.L.J., Smith, E.L. IH, Harwerth, R.S., von Noorden, G. (1984). Stereoblind monkeys have few binocular neurons. Investigative Ophthalmology and Visual Science, 25, 779–781.Google Scholar
  15. Darian-Smith, I., Sugitani, M., Heywood, J. (1982). Touching textured surfaces: Cells in somatosensory cortex respond both to finger movement and to surface features. Science, 218, 906–909.Google Scholar
  16. Dodge, R. (1900). Visual perception during eye movement. Psychological Review, 1, 454–465.CrossRefGoogle Scholar
  17. Duncker, K. (1929). Uber induzierte Bewegung. Psychologische Forschung, 12, 130–259.CrossRefGoogle Scholar
  18. Gerrits, H.J.M., Stassen, H.P.W., van Eming, L.J.T.O. (1984). The role of drifts and saccades for the preservation of brightness perception. In L. Spillman B. Wooten (Eds.), Sensory experience, adaptation, and perception (pp 439–459 ). Hillsdale, NJ: Erlbaum.Google Scholar
  19. Gibson, J.J. (1966). The senses considered as perceptual systems. Boston: Houghton Mifflin.Google Scholar
  20. Goldberg, M.E., Bushnell, M.C. (1979). Monkey frontal eye fields have a neuronal signal that precedes visually guided saccades. Society for Neurosciences Abstracts, 5, 779.Google Scholar
  21. Held, R., Hein, A. (1963). Movement–produced stimulation in the development of visually guided behavior. Journal of Comparative Physiological Psychology, 56, 872–876.Google Scholar
  22. Hering, E. (1977). The theory of binocular vision. (B. Bridgeman, Trans.). New York: Plenum (original work published 1868 ).Google Scholar
  23. Hess, E.H. (1956). Space perception in the chick. Scientific American, 195, 71–80.CrossRefGoogle Scholar
  24. Hirsch, H.V.B. (1972). Visual perception in cats after environmental surgery. Experimental Brain Research, 15, 405–423.CrossRefGoogle Scholar
  25. Hirsch, H.V.B., Spinelli, D.N. (1970). Visual experience modifies distribution of horizontally and vertically oriented receptive fields in cats. Science, 168, 869–871.Google Scholar
  26. Hubel, D. Wiesel, T. (1965). Binocular interactions in striate cortex kittens reared with artificial squint. Journal of Neurophysiology, 28, 1041–1059.Google Scholar
  27. Hubel, D., Wiesel, T, (1977). Functional architecture of macaque monkey visual cortex. Proceedings of the Royal Society of London, 198, 1–59.Google Scholar
  28. Kasamatsu, T., Pettigrew, J. (1979). Preservation of binocularity after monocular deprivation in the striate cortex of kittens treated with 6–hydroxydopamine. Journal of Comparative Neurology, 185, 139–162.Google Scholar
  29. Kasamatsu, T., Watabe, K., Scholler, E., Heggelund, P. (1983). Restoration of neuronal plasticity in cat visual cortex by electrical stimulation of the locus coeruleus. Neuroscience Abstracts, 9, 911.Google Scholar
  30. Latour, P. (1962). Visual threshold during eye movements. Vision Research, 2, 261–262.CrossRefGoogle Scholar
  31. Lynch, J.C., Mountcastle, V., Talbot, W.H., Yin, T. (1977). Parietal lobe mechanisms for directed visual attention. Journal of Neurophysiology, 40, 362–389.Google Scholar
  32. Mack, A. (1970). An investigation of the relationship between eye and retinal image movement in the perception of movement. Perception and Psychophysics, 8, 291–298.CrossRefGoogle Scholar
  33. MacKay, D. (1980). Elevation of usual threshold by displacement of retinal image. Nature, 225, 90–92.CrossRefGoogle Scholar
  34. Minsky, M., Papert, S. (1969). Perceptrons. Cambridge, MA: MIT Press.Google Scholar
  35. Mitrani, L., Mateeff, S., Yakimoff, N. (1971). Is saccadic suppression really saccadic? Vision Research, 11, 1157–1161.Google Scholar
  36. Mize, R., Murphy, E.H. (1973). Selective visual experience fails to modify receptive field properties of rabbit striate cortical neurones. Science, 180, 320–323.Google Scholar
  37. Noton, D., Stark, L. (1971). Scanpaths in eye movements during pattern perception. Science, 171, 308–311.Google Scholar
  38. Pettigrew, J., Freeman, R.D. (1973). Visual experiences without lines: Effect on developing cortical neurons. Science, 182, 599–601.Google Scholar
  39. Riggs, L., Meiton, P., Morton, H. (1974). Suppression of visual phosphenes during saccadic eye movement. Vision Research, 14, 997–1011.Google Scholar
  40. Robinson, D.A. (1981). Control of eye movements. In V.B. Brooks (Ed.), Handbook of physiology Sec 1. The nervous system: Vol. II. Motor control, Part 2. Bethesda, MD: American Physiological Society.Google Scholar
  41. Schor, C., Bridgeman, B., Tyler, C.W. (1983). Spatial characteristics of static and dynamic stereoacuity in strabismus. Investigative Ophthalmology and Visual Science, 24, 1572–1579.Google Scholar
  42. Shannon, C., Weaver, W. (1949). The mathematical theory of communication. Urbana: University of Illinois Press.Google Scholar
  43. Shirokawa, T., Kasamatsu, T. (1984). Beta-adrenergic receptor mediates neuronal plasticity in visual cortex. Investigative Ophthalmology and Visual Science, 25 ( Suppl.), 214.Google Scholar
  44. Sparks, D., Pollack, J. (1977). The neural control of saccadic eye movements: the role of the superior colliculus. In B.A. Brooks F. Bajandas (Eds.), Eye movements. New York: Plenum.Google Scholar
  45. Spinelli, D.N., Jensen, F. (1979). Plasticity: The mirror of experience. Science, 203, 75–78.Google Scholar
  46. Spinelli, D.N., Hirsch, H.V.B., Phelps, R., Metzler, J. (1972). Visual experience as a determinant of the response characteristics of cotical receptive fields in cats. Experimental Brain Research, 15, 289–304.Google Scholar
  47. Stark, L.W., Ellis, S. (1981). Scanpaths revisited: Cognitive models direct active looking. In D. Fisher, R. Monty, J. Senders (Eds.), Eye movements: Cognition and visual perception. Hillsdale, NJ: Erlbaum.Google Scholar
  48. Steinman, R., Haddad, G., Skavenski, A., Wyman, D. (1973). Miniature eye movement. Science, 181, 810–819.Google Scholar
  49. Stevens, J.K., Emerson, R., Gerstein, G., Kallos, T., Neufeld, G., Nichols, C., Rosenquist, A. (1976). Paralysis of the awake human: visual perceptions. Vision Research, 16, 93–98.Google Scholar
  50. Stryker, M., Sherk, H. (1975). Modification of cortical orientation of selectivity in the cat by restricted visual experience: A reexamination. Science, 190, 904–906.Google Scholar
  51. Stryker, M., Sherk, H., Leventhal, A., Hirsch, H.V.B. (1978). Physiological consequences for the cat’s visual cortex of effectively restricting early visual experience with oriented contours. Journal of Neurophysiology, 41, 896–909.Google Scholar
  52. Turkel, J., Gijsders, K., Pritchard, R. (1975). Environmental modification of oculomotor and neural function in cats, investigative Ophthalmology and Visual Science, 14 ( Suppl.), 63.Google Scholar
  53. Volkman, F., Riggs, L., White, K., Moore, R. (1978). Contrast sensitivity during saccadic eye movements. Vision Research, 18, 1193–1199.Google Scholar
  54. Westheimer, G., Blair, S.M. (1973). Oculomotor defects in cerebellectomized monkeys. Investigative Ophthalmology, 12, 618–621.Google Scholar
  55. Wiesel, T., Hubel, D. (1965). Extent of recovery from the effects of visual deprivation in kittens. Journal of Neurophysiology, 28, 1060–1072.Google Scholar
  56. Winterson, B., Collewijn, H. (1976). Microsaccades during finely guided visuomotor tasks. Vision Research, 16, 1387–1390.Google Scholar
  57. Yarbus, A.L. (1967). Eye movements and vision (L.A. Riggs, Trans.). New York: Plenum.Google Scholar
  58. Zuber, B., Stark, L. (1966). Saddadic suppresson: elevation of visual threshold associated with saccadic eye movements. Experimental Neurology, 16, 65–79.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • B. Bridgeman

There are no affiliations available

Personalised recommendations