Monoaminergic Systems and Child Psychiatric Pathophysiology

  • B. Garreau
  • D. Lerminiaux
  • C. Barthélémy
  • J. P. Muh
  • G. Lelord


Since the demonstration in 1921 by Otto Loewi that a chemical substance was released after nervous stimulation, much neuroscientific research has been performed on neurotransmission and chemical synapse. Work in neuro- and psychopharmacology has permitted the comparison between notions of neurotransmission and neuropsychiatric syndromes.


Attentional Deficit Hyperactivity Disorder Anorexia Nervosa Dopaminergic Neuron Locus Coeruleus Reticular Formation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alpert M, Friedhoff AJ (1980) An un-dopamine hypothesis of schizophrenia. Schizophr Bull 6:387–390PubMedGoogle Scholar
  2. Angrist B, Sathananthan G, Wilk S, Gershon S (1974) Amphetamine psychosis: behavioral and biochemical aspects. J Psychiatr Res 11:13–23PubMedCrossRefGoogle Scholar
  3. Berger M, Müller W (1989) Psychologische Verlaufsuntersuchungen zur noradrenergen-cholinergen Imbalance—Hypothese affektiver Erkrankungen. Arbeits- und Ergebnisbericht des Sonderforschungsbereichs 258. University of Heidelberg, pp 1–62Google Scholar
  4. Besson JM and Tassin JP (1985) Les systèmes dopaminergiques et leurs récepteurs. Neuropsy 1:21–29Google Scholar
  5. Besson JM, Chaouch A, Chitour D (1987) Physiologie de la douleur. Encyl. Med. Chir. (Paris-France), Neurologie, 17003F10, 8PGoogle Scholar
  6. Bird ED, Spokes EG, Iversen LL (1980) Dopamine and noradrenaline in post-mortem brain in Huntington’s diesase and schizophrenic illness. Acta Psychiatr Scand Supplt 280 61:63–73Google Scholar
  7. Blundell JE (1984) Serotonin and appetite. Neuropharmacology 23:1537–1551PubMedCrossRefGoogle Scholar
  8. Bruneau N, Garreau B, Barthélémy C, Martineau J, Muh J, Lelord G (1990) Clinical, electrophysiological, and biochemical markers and monoaminergic hypotheses in autism. This volume, pp 217–234Google Scholar
  9. Cohen DJ, Caparullo BK, Shaywitz BA and Bowers MB (1977) Dopamine and serotonin metabolism in neuropsychiatrically disturbed children. Arch Gen Psychiatry 34:534–537PubMedGoogle Scholar
  10. Cohen DJ, Schaywitz BA, Caparulo B, Young JG and Bowers MB (1988) Chronic, multiple tics of Gilles dela Tourette’s disease: CSF acid monoamine metabolites after probenecid administration. Arch Gen Psychiatry 35:245–250Google Scholar
  11. Costall B, Naylor RJ (1979) Behavioral aspects of dopamine agonists and antagonists. In Horn AS, Korf J, Westerink BHC (eds) Neurobiology of dopamine. Academic Press Publ 31: 555–576Google Scholar
  12. Coyle JT (1985) Development of brain neurotransmitters and child psychiatry. In RF Hales and AJ Frances (eds) Annual review of the American Academy of Child Psychiatry, Vol. 4, Washington D.C., American Psychiatry PressGoogle Scholar
  13. Evrard Ph, Lyon G and Gadisseux JF (1984) Le développement prénatal du système nerveux et ses perturbations: les mécanismes généraux. In: Progrès en néonatologie. Karger, Basel, pp 63–69Google Scholar
  14. Filser JG, Spira J, Fischer M, Gattaz WF, Müller WE (1988) The evaluation of MHPG-sulfate as a possible marker of the central norepinephrine turnover. Studies in healthy volunteers and depressed patients. J Psychiatr Res 22:171–181PubMedCrossRefGoogle Scholar
  15. Fuxe K (1978) Place de la dopamine dans les amines biogènes à fonction de neurotransmetteur. Triangle. J Sandoz Sci Méd 28:125–136Google Scholar
  16. Garfinkel PE, Warsh JJ, Stranger HC, Godse DD (1977) CNS monoamine metabolism in bipolar affective disorder. Evaluation using a peripheral decarboxylase inhibitor. Arch Gen Psychiatry 34:735–739PubMedGoogle Scholar
  17. Gamier C, Barthélémy C, Garreau B, Jouve J, Muh JP and Lelord G (1983) Les anomalies des monoamines et de leurs enzymes dans l’autisme de l’enfant. L’encéphale, IX 3:201–261Google Scholar
  18. Garreau B, Barthélémy C, Bruneau N, Martineau J (1990) Sleep disturbances in children: from the physiological to the clinical. This volume, pp 317–342Google Scholar
  19. Gerner RH, Cohen DJ, Fairbanks L, Anderson GM, Young JG, Scheirin M, Linnoila M, Shaywitz BA, Hare TA (1984) CSF neurochemistry of women with anorexia nervosa and normal women. Am J Psychiatr 141:1441–1444PubMedGoogle Scholar
  20. Hamon M (1981) Les systèmes sérotoninergiques corticaux. Séminaire de psychiatrie biologique, Hôpital Ste Anne 1:107–126Google Scholar
  21. Holmes GL (1986) Morphological and physiological maturation of the brain in the neonate and young children. J Clin Neurophysiol 3, 3:209–238PubMedCrossRefGoogle Scholar
  22. Hosobuchi Y (1972) Tryptophan reversal of tolerance to analgesia induced by central gray stimulation. Lancet 2:47Google Scholar
  23. Hudson JI and Pope HG (1987) Newer antidepressants in the treatment of bulimia nervosa. Psych Pharmacology Bull 23:52–57Google Scholar
  24. Iversen SD (1984) 5-HT and anxiety. Neuropharmacology 23:1553–1560PubMedCrossRefGoogle Scholar
  25. Jouvet M (1969) Biogenic amines and the states of sleep. Science 163:32–41PubMedCrossRefGoogle Scholar
  26. Kaye WH, Ebert MH, Gwirtman HE, Weiss SR (1984) Differences in brain serotoninergic metabolism between nonbulimic and bulimic patients with anorexia nervosa. Am J Psychiatry 141:1598–1601PubMedGoogle Scholar
  27. Langer SZ, Raisman R, Sechter D, Gay C, Loo H, Zarifian E (1984) 3H-Imipramine and 3H-desipramine binding sites in depression. In: Frontiers in biochemical and pharmacological research in depression. E Ushdin et al. (eds). Raven, New York, pp 113–125Google Scholar
  28. Launay JM, Pasques D, Dreux C (1983) Données nouvelles sur le métabolisme de la Sérotonine dans les plaquettes sanguines: modèles de neurones. Act Phar Biol Clin 2:155–159Google Scholar
  29. Laverty R (1978) Catecholamines: role in health and disease. Drugs 16:418–440PubMedCrossRefGoogle Scholar
  30. Lichtensteiger W (1979) The neuroendocrinology of dopamine systems In: Horn AS, Korf J, Westerink BHC (eds). Neurobiology of dopamine. Academic, London New York San Francisco, pp491–521Google Scholar
  31. Lidberg L, Asberg M, Sunquist-Stensman UB (1984) 5-Hydroxyindolacetic acid levels in attempted suicides who have killed their children. Lancet 2:928PubMedCrossRefGoogle Scholar
  32. Linnoila M, Virkkunen M, Scheinin M, Nuutila A, Rimon R, Goodwin FK (1983) Low cerebrospinal fluid 5-hydroxyindolcetic acid concentration differentiates impulsive from nonimpulsive violent behavior. Life Science 33:2609–2614CrossRefGoogle Scholar
  33. Lloyds KG (1978) Neurotransmitter interactions related to central dopamine neurons. Essays Neurochem Neuropharmacol 3:131–207Google Scholar
  34. Lyon G, Evrard Ph and Gadisseux JF (1984) Les anomalies du dévelopement du télencéphale human pendant la période cytogénèse-histogénèse. Progrès néonatalogie: 70–84Google Scholar
  35. Mac Kay AvP, Bird ED, Iversen LL, Spokes EC, Creese I, Snyder SH (1980) Dopaminergic abnormalities in post-mortem schizophrenic brain. Adv Biochem Psychopharmacol 24:325–333Google Scholar
  36. Meltzer HY (1980) Relevance of dopamine autoreceptors for psychiatry: preclinical and clinical studies. Schizophr Bull 6:456–475PubMedGoogle Scholar
  37. Mignot E and Garcia A (1986) Sérotonine et dépression. Neuropsy 12:353–362Google Scholar
  38. Nieoullon A (1982) La transmission chimique de l’influx nerveux. Encycl Med Chir. Paris, Neurologie 17003, A10Google Scholar
  39. Oades RD (1987) Attention deficit disorder with hyperactivity: the contribution of catecholaminergic activity. Progress in Neurobiology 29:365–391PubMedCrossRefGoogle Scholar
  40. Oliveras JL, Hosobuchi Y, Guilbaud G, Besson JR (1978) Analgesic electrical stimulation of the feline nucleus raphe magnus. Development of tolerance and its reversal by 5-HTP. Brain Research 146:404–409PubMedCrossRefGoogle Scholar
  41. Patay M, Scharbach H and Levron M (1980) Glycine, acétylcholine et Sérotonine: neuro-transmédiateurs ou neuromodulateurs? Psycho Med 12:25–34Google Scholar
  42. Petitjean F, Buda C, Janin M, Sakai K, Jouvet M (1978) Patterns of sleep alteration following selective raphe nuclei lesions. Sleep Research 7:40Google Scholar
  43. Reynolds DV (1969) Surgery in the rat during electrical analgesia induced by focal brain stimulation. Science 104:444–445CrossRefGoogle Scholar
  44. Riddle MA, Leckman JF, Anderson GM, Ort SI, Hardin MT, Stevenson J, Cohen DJ (1988) Tourette’s syndrome: clinical and neurochemical correlates. J Am Acad Child Psychiatry 27:409–412CrossRefGoogle Scholar
  45. Riederer P, Toifl K and Kruzik P (1982) Excretion of biogenic amine metabolites in anorexia nervosa. Clin Chim Acta 123:27–32PubMedCrossRefGoogle Scholar
  46. Roth RH (1979) Tyrosine hydroxylase. In: Horn AS, Korf J, Westerink BHC (eds) The neurobiology of dopamine. Academic, New York, pp 101–122Google Scholar
  47. Rothenberger A, Müller HU, Müller W (1990) Central versus peripheral disturbances in noradrenergic metabolism of adolescents with anorexia nervosa. In: Remschmidt H, Schmidt MH (eds). Child and Youth Psychiatry-European Perspectives, vol. 1, Huber, Houston Toronto Berlin, in pressGoogle Scholar
  48. Rydin E, Schalling D, Asberg M (1982) Rorschach ratings in depressed and suicidal patients with low levels of 5-HIAA in CSF. Psychiatr Res 7:229–243CrossRefGoogle Scholar
  49. Sarnat HB (1987) Troubles de la migration neuronale terminale au cours de la période prénatale. Am J Dis Child 6, 59:380–390Google Scholar
  50. Schildkraut JJ, Keeler BA, Grab LL (1973) MHPG excretion and clinical classification in depressive disorders. Lancet 1:1251–1252PubMedCrossRefGoogle Scholar
  51. Shaywitz BA, Cohen DJ and Bowers MB (1977) CSF monoamine metabolites in children with minimal brain dysfunction: evidence for alteration of brain dopamine. Pediatrics 90:67–71CrossRefGoogle Scholar
  52. Synder SH (1976) Catecholamines, serotonin and histamine. In: Siegel GJ, Alberts RW, Katzman R, Agranoff BW (eds) Basic neurochemistry. Little Brown, Boston, pp 203–217Google Scholar
  53. Soubrie P (1986) Neurones sérotoninergiques et comportement. J Pharmacol 11–2:107–112Google Scholar
  54. Stanley N, Vingilio J, Gershon S (1982) triated imipramine binding sites are decreased in the frontal cortox of suicide. Science 216:1337–1338PubMedCrossRefGoogle Scholar
  55. Soubrie P (1986) Neurones sérotoninergiques et comportement. J Pharmacol 11–2:107–112Google Scholar
  56. Stoff DM, Pollock L, Bridger WH (1985) Platelet imipramine binding sites correlate with aggression in adolescents. In: Shagass C, Josiassen RC, Bridger WH, Weiss KJ, Stoff DM, Simpson G (eds) Biological psychiatry. Elsevier, New York, pp 180–183Google Scholar
  57. Tassin JP, Les Systèmes noradrénergiques centraux. Séminaire de psychiatrie biologique, Hôpital Ste Anne 1:81–96Google Scholar
  58. Willner P (1985) Antidepressants and serotoninergic neurotransmission: an integrative review. Psychopharmacology 85:307–404CrossRefGoogle Scholar
  59. Young JG, Cohen DJ, Anderson GM and Shaywitz BA (1984) Neurotransmitter. In: Greenhill L and Shopsin B (eds). Ontogeny and perspective for studies of child development and pathology of childhood. Spectrum, New York, pp 51–83Google Scholar
  60. Zemishlamy Z, Modai I, Apter A, jerushalmy Z, Samuel E and Tyano S (1987) Serotonin (5-HT) uptake by blood platelets in anorexia nervosa. Acta Psychiatr Scand 75:127–130CrossRefGoogle Scholar
  61. Zametkin AJ, Rapoport JL (1987) Neurobiology of attention deficit disorder with hyperactivity: where have we come in 50 years? J Amer Acad Child Adol Psychiatry 26:676–686CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • B. Garreau
  • D. Lerminiaux
  • C. Barthélémy
  • J. P. Muh
  • G. Lelord

There are no affiliations available

Personalised recommendations