Skip to main content

Structural Basis of Left Ventricular Dysfunction: Role of Collagen Network Remodeling and Potential Therapeutic Interventions

  • Conference paper
Heart Failure and Arrhythmias
  • 45 Accesses

Abstract

Left ventricular hypertrophy is the primary risk factor associated with the appearance of symptomatic heart failure [1]. Why hypertrophic growth of the myocardium would be adaptive in a weight lifter, fostering enhanced cardiac performance during elevations in arterial pressure associated with isometric exercise, and pathologic in the patient with hypertension, is unclear. In seeking to identify the pathogenetic mechanisms responsible for pathologic hypertrophy, basic and applied scientists have hoped to unravel this puzzle. As an outgrowth of this investigation, important insights into the contractile process of cardiac muscle have emerged while potential biochemical abnormalities that would account for impaired ventricular function have been identified [2, 3]. To date, however, no unifying concept has linked abnormalities in the biochemistry of contraction with the clinical appearance of heart failure. Furthermore, it is not clear whether any given abnormality would be a primary or secondary event.

This work was supported in part by NHLBI grant no. R05-HL-31701.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kannel WB (1989) Epidemiological aspects of heart failure. In: Weber KT (ed) Congestive heart failure. Cardiol Clin 7: 1–9

    PubMed  CAS  Google Scholar 

  2. Wikman-Coffelt J, Parmley WW, Mason DT (1979) The cardiac hypertrophy process. Analyses of factors determining pathological vs. physiological development. Circ Res 45: 697–707

    PubMed  CAS  Google Scholar 

  3. Schwart A, Sordahl LA, Entman ML, Allen JC, Reddy YS, Goldstein MA, Luchi RJ, Wyborny LE (1973) Abnormal biochemistry in myocardial failure. Am J Cardiol 32:407– 422

    Google Scholar 

  4. Maron BJ, Ferraus VJ, Roberts WC (1975) Ultrastructural features of degenerated cardiac muscle cells in patients with cardiac hypertrophy. Am J Pathol 79: 387–396

    PubMed  CAS  Google Scholar 

  5. Anversa P, Ricci R, Olivetti G (1986) Quantitative structural analysis of the myocardium during physiologic growth and induced cardiac hypertrophy: a review. J Am Coll Cardiol 7: 1140–1149

    Article  PubMed  CAS  Google Scholar 

  6. Tomanek RJ, Palmer PJ, Pfeiffer GL, Schreiber KL, Eastham CL, Marcus ML (1986) Morphometry of canine coronary arteries, arterioles, and capillaries during hypertension and left ventricular hypertrophy. Circ Res 58: 38–46

    PubMed  CAS  Google Scholar 

  7. Rakusan K, Wicker P, Abdul-Samad M, Healy B, Turek Z (1987) Failure of swimming exercise to improve capillarization in cardiac hypertrophy of renal hypertensive rats. Circ Res 61: 641–647

    PubMed  CAS  Google Scholar 

  8. Weber KT, Clark WA, Janicki JS, Shroff SG (1987) Physiologic versus pathologic hypertrophy and the pressure-overload myocardium. J Cardiovasc Pharmacol 10: 537–549

    Google Scholar 

  9. Abrahams C, Janicki JS, Weber KT (1987) Myocardial hypertrophy in Macaca fascicularis: structural remodeling of the collagen matrix. Lab Invest 56: 676–683

    PubMed  CAS  Google Scholar 

  10. Weber KT, Janicki JS, Shroff SG, Pick R, Abrahams C, Chen RM, Bashey RI (1988) Collagen compartment remodeling in the pressure overloaded left ventricle. J Appl Cardiol 3: 37–46

    CAS  Google Scholar 

  11. Weber KT, Janicki JS, Shroff SG, Pick R, Chen RM, Bashey RI (1988) Collagen remodeling of the pressure overloaded, hypertrophied nonhuman primate myocardium. Circ Res 62: 757–765

    PubMed  CAS  Google Scholar 

  12. Pick R, JE, Janicki JS, Weber KT (1989) Myocardial fibrosis in nonhuman primate with pressure overload hypertrophy. Am J Pathol 135: 771–781

    PubMed  CAS  Google Scholar 

  13. Doering CW, Jalil JE, Janicki JS, Pick R, Aghili S, Abrahams C, Weber KT (1988) Collagen network remodeling and diastolic stiffness of the rat left ventricle with pressure overload hypertrophy. Cardiovasc Res 22: 686–695

    Article  PubMed  CAS  Google Scholar 

  14. Jalil JE, Doering CW, Janicki JS, Pick R, ShroffS, Weber KT (1989) Fibrillar collagen and myocardial stiffness in the intact hypertrophied rat left ventricle. Circ Res 64: 1041–1050

    PubMed  CAS  Google Scholar 

  15. Jalil JE, Doering CW, Janicki JS, Pick R, Clark WA, Weber KT (1988) Structural vs contractile protein remodeling and myocardial stiffness in hypertrophied rat left ventricle. J Mol Cell Cardiol 20: 1179–1187

    Article  PubMed  CAS  Google Scholar 

  16. Carroll EP, Janicki JS, Pick R, Weber KT (1989) Myocardial stiffness and reparative fibrosis following coronary embolization in the rat. Cardiovasc Res 23: 657–670

    Article  Google Scholar 

  17. Bing OHL, Fanburg BL, Brooks WW, Matsushita S (1978) The effect of the lathyrogen ß-amino proprionitrile ( BAPN) on the mechanical properties of experimentally hypertrophied rat cardiac muscle. Circ Res 43: 632–637

    Google Scholar 

  18. Averiii DB, Ferrario CM, Tarazi RC, Sen S, Bajbus R (1976) Cardiac performance in rats with renal hypertension. Circ Res 38: 280–288

    Google Scholar 

  19. Pfeffer JM, Pfeffer MA, Fishbein MC, Froehlich ED (1979) Cardiac function and morphology with aging in the spontaneously hypertensive rat. Am J Physiol 6: H461–H468

    Google Scholar 

  20. Weber KT, Janicki JS, Pick R, Capasso J, Anversa P (1990) Myocardial fibrosis and pathologic hypertrophy in the rat with renovascular hypertension. Am J Cardiol 65: (in press)

    Google Scholar 

  21. Capasso JM, Palackal T, Olivetti G, Anversa P (1990) Left ventricular failure induced by long term hypertension in rats. Circ Res (in press)

    Google Scholar 

  22. Weber KT, Janicki JS (1989) Angiotensin II and myocardial remodeling. Br J Clin Pharmacol 28: 1415–1505

    Google Scholar 

  23. Jalil JE, Janicki JS, Shroff SG, Pick R, Weber KT (1989) Captopril pretreatment and myocardial fibrosis and stiffness in renovascular hypertensive rats. J Am Coll Cardiol 13: 82A (abstr)

    Google Scholar 

  24. Michel JB, Salzmann JL, De Lourdes Cerol M, Dussaule JC, Azizi M, Corman B, Camilleri JP, Corvol P (1988) Myocardial effect of converting enzyme inhibition in hypertensive and normotensive rats. Am J Med [Suppl 3A]: 12–21

    Google Scholar 

  25. Medugorac I, Jacob R (1983) Characterization of left ventricular collagen in the rat. Cardiovasc Res 17: 15–21

    Article  PubMed  CAS  Google Scholar 

  26. Dawson R, Milne G, Williams RB (1982) Changes in the collagen of rat heart in Cooper-deficiency-induced cardiac hypertrophy. Cardiovasc Res 16: 559–565

    Article  PubMed  CAS  Google Scholar 

  27. Schwarz F, Flameng W, Schaper J, Hehrlein F (1978) Correlation between myocardial strcuture and diastolic properties of the heart in chronic aortic valve disease: effects of corrective surgery. Am J Cardiol 42: 895–903

    Article  PubMed  CAS  Google Scholar 

  28. Caspari PG, Newcomb M, Gibson K, Harris P (1977) Collagen in the normal and hypertrophied human ventricle. Cardiovasc Res 11: 554–558

    Article  PubMed  CAS  Google Scholar 

  29. Hess OM, Schneider J, Koch R, Bamert C, Grimm J, Krayenbuehl HP (1981) Diastolic function and myocardial structure in patients with myocardial hypertrophy. Sepcial reference to normalized viscoelastic data. Circulation 63: 360–371

    Google Scholar 

  30. Schaper J, Schaper W (1983) Ultrastructural correlates of reduced cardiac function in human heart disease. Eur Heart J 4 [Suppl A]: 35–42

    PubMed  Google Scholar 

  31. Oldershaw PJ, Brooksby IAB, Davies MJ, Coltart DJ, Jenkins BS, Webb-Peploe MM (1980) Correlations of fibrosis in endomyocardial biopsies from patients with aortic valve disease. Br Heart J 44: 609–611

    Article  PubMed  CAS  Google Scholar 

  32. Krayenbuehl HP, Hess OM, Monrad ES, Schneider J, Mall G, Turina M (1989) Left ventricular myocardial structure in aortic valve disease before, intermediate, and late after aortic valve replacement. Circulation 79: 744–755

    Article  PubMed  CAS  Google Scholar 

  33. Pearlman ES, Weber KT, Janicki JS, Pietra G, Fishman AP (1982) Muscle fiber orientation and connective tissue content in the hypertrophied human heart. Lab Invest 46: 158–164

    PubMed  CAS  Google Scholar 

  34. Anderson KR, St. John Sutton MG, Lie JT (1979) Histopathological types of cardiac fibrosis in myocardial disease. J Pathol 128: 79–85

    Article  PubMed  CAS  Google Scholar 

  35. Naeye RL, Liedtke A J (1976) Consequences of intramyocardial arterial lesions in aortic valvular stenosis. Am J Pathol 85: 569–580

    PubMed  CAS  Google Scholar 

  36. Tanaka M, Fujiwara H, Onodera T, Wu D, Matsuda M, Hamashime Y, Kawai C (1987) Quantitative analysis of narrowing of intramyocardial small arteries in normal hearts, hypertensive hearts, and hearts with hypertrophic cardiomyopathy. Circulation 75:1130– 1139

    Google Scholar 

  37. Grove D, Zak R, Nair KG, Aschenbrenner V (1969) Biochemical correlates of cardiac hypertrophy. IV. Observations on the cellular organization of growth during myocardial hypertrophy in the rat. Circ Res 25: 473–485

    PubMed  CAS  Google Scholar 

  38. Skosey JL, Zak R, Martin AF (1972) Biochemical correlates of cardiac hypertrophy. V. Labeling of collagen, myosin and nuclear DNA experimental myocardial hypertrophy in the rat. Circ Res 31: 145–157

    PubMed  CAS  Google Scholar 

  39. Cutilletta AF, Dowell RT, Rudnik M, Arcilla RA, Zak R (1975) Regression of myocardial hypertrophy: experimental model, changes in heart weight, nucleic acids and collagen. J Mol Cell Cardiol 7: 767–781

    Article  CAS  Google Scholar 

  40. Bing OHL, Matsushita S, Fanburg BL, Levine HJ (1971) Mechanical properties of rat cardiac muscle during experimental hypertrophy. Circ Res 28: 233–245

    Google Scholar 

  41. Sen S, Tarazi RC, Bumpus FM (1981) Reversal of cardiac hypertrophy in renal hypertensive rats: medical vs. surgical therapy. Am J Physiol 240: H408–H412

    PubMed  CAS  Google Scholar 

  42. Pfeffer MA, Pfeffer JM, Froehlich ED (1976) Pumping ability of the hypertrophying left ventricle of the spontaneously hypertensive rat. Circ Res 38: 423–429

    PubMed  CAS  Google Scholar 

  43. Sen S, Bumpus FM (1979) Collagen synthesis in development and reversal of cardiac hypertrophy in spontaneously hypertensive rats. Am J Cardiol 44: 954–958

    Article  PubMed  CAS  Google Scholar 

  44. Bartosova D, Chvapil M, Korecky B, Poupa O, Rakusan K, Turek Z, Vizek M (1969) The growth of the muscular and collagenous parts of the rat heart in various forms of car- diomegaly. J Physiol 200: 185–195

    Google Scholar 

  45. Michel JB, Salzmann JL, Ossondo Nlom M, Bruneval P, Barres D, Camilleri JP (1986) Morphometric analysis of collagen network and plasma perfused capillary bed in the myocardium of rats during evolution of cardiac hypertrophy. Basic Res Cardiol 81: 142–154

    Article  PubMed  CAS  Google Scholar 

  46. Thiedemann KU, Holubarsch C, Medugorac I, Jacob R (1983) Connective tissue content and myocardial stiffness in pressure overload hypertrophy. A combined study of morphologic, morphometric, biochemical and mechanical parameters. Basic Res Cardiol 78:140– 155

    Google Scholar 

  47. Chapman D, Weber KT, Eghbali M (1989) Accumulation and localization of types I and III collagen in the hypertrophied rat left ventricle FASEB 3:A621 (abstr)

    Google Scholar 

  48. Rowe RWD (1974) Collagen fiber arrangement in intramuscular connective tissue. Changes associated with muscle shortening and their possible relevance to raw meat toughness measurements. J Food Technol 9: 501–508

    Article  Google Scholar 

  49. Pick R, Jalil JE, Janicki JS, Weber KT (1954) The fibrillar nature and structure of iso- proterenol-induced myocardial fibrosis in the rat. Am J Pathol 134: 365–371

    Google Scholar 

  50. Burton AC (1954) Relation of structure to function of the tissues of the wall of blood vessels. Physiol Rev 34: 619–642

    PubMed  CAS  Google Scholar 

  51. Parry DAD, Craig AS (1988) Collagen fibrils during development and maturation and their contribution to the mechanical attributes of connective tissue. In: Nimni ME (ed) Collagen, Vol 2. CRC, Boca Raton, pp 1 –23

    Google Scholar 

  52. Weber KT, Janicki JS, Hunter WC, Shroff SG, Pearlman ES, Fishman AP (1982) The contractile behavior of the heart and its functional coupling to the circulation. Prog Cardio- vasc Dis 24: 375–400

    Article  CAS  Google Scholar 

  53. McElroy PA, Janicki JS, Weber KT (1988) Early ventricular dysfunction in hypertensive patients with preserved aerobic capacity. J Am Coll Cardiol 11: 142A (abstr.)

    Google Scholar 

  54. Jalil JE, Janicki JS, Pick R, Abrahams C, Weber KT (1989) Fibrosis-induced reduction of endomyocardium in the rat following isoproterenol. Circ Res 65: 258–264

    PubMed  CAS  Google Scholar 

  55. Eghbali M, Czaja MJ, Zeyel M, Weiner FR, Zern MA, Seifter S, Blumenfeld OO (1988) Collagen chain mRNAs in isolated heart cells from young and adult rats. J Mol Cell Cardiol 20: 267–276

    Article  PubMed  CAS  Google Scholar 

  56. Eghbali M, Blumenfeld OO, Seifter S, Buttrick PM, Leinwand LA, Robinson TF, Zern MA, Giambrone MA (1989) Localization of types I, III, and IV collagen mRNAs in rat heart cells by in situ hybridization. J Mol Cell Cardiol 21: 103–113

    Google Scholar 

  57. Wiener J, Giacomelli F (1973) The cellular pathology of experimental hypertension. VII. Structure and permeability of the mesenteric vasculature in angiotensin-induced hypertension. Am J Pathol 72: 221–240

    PubMed  CAS  Google Scholar 

  58. Wiener J, Lattes RG, Meltzer BG, Spiro D (1969) The cellular pathology of experimental hypertension. IV. Evidence for increased vascular permeability. Am J Pathol 54: 187–207

    PubMed  CAS  Google Scholar 

  59. Bhan RD, Giacomelli F, Wiener J (1978) Ultrastructure of coronary arteries and myocardium in experimental hypertension. Exp Mol Pathol 29: 66–81

    Article  PubMed  CAS  Google Scholar 

  60. Giacomelli F, Anversa P, Wiener J (1976) Effect of angiotensin-induced hypertension on rat coronary arteries and myocardium. Am J Pathol 84: 111–125

    PubMed  CAS  Google Scholar 

  61. Engler E, Matthias D, Becker CH (1980) Pathomorphological reactions of myocardium and intramural vessels of rats in the course of hypertension induced by depot angiotensin. Autoradiographic, light and electron microscopic investigations. Exp Pathol 18: 37–51

    CAS  Google Scholar 

  62. Laine GA (1988) Microvascular changes in the heart during chronic arterial hypertension. Circ Res 62: 953–960

    PubMed  CAS  Google Scholar 

  63. Michel JB, Dussaule JC, Choudat L, Auzan C, Nochy D, Corvol P, Menard J (1986) Effects of antihypertensive treatment in one-clip, two kidney hypertension in rats. Kidney Int 29: 1011–1020

    Article  PubMed  CAS  Google Scholar 

  64. Ooshima A, Fuller GC, Cardinale GJ, Spector S, Udenfriend S (1974) Increased collagen synthesis in blood vessels of hypertensive rats and its reversal by antihypertensive agents. Proc Natl Acad Sci USA 71: 3019–3023

    Article  PubMed  CAS  Google Scholar 

  65. Sen S, Tarazi RC, Bumpus FM (1980) Effect of converting enzyme inhibitor (SQ14,225) on myocardial hypertrophy in spontaneously hypertensive rats. Hypertension 2: 169–176

    PubMed  CAS  Google Scholar 

  66. Sen S, Tarazi RC, Bumpus FM (1976) Biochemical changes associated with development and reversal of cardiac hypertrophy in spontaneously hypertensive rats. Cardiovasc Res 10: 254–261

    Article  PubMed  CAS  Google Scholar 

  67. Sen S, Tarazi RC, Bumpus FM (1977) Cardiac hypertrophy and antihypertensive therapy. Cardiovasc Res 11: 427–433

    Article  PubMed  CAS  Google Scholar 

  68. Motz W, Strauer BE (1989) Left ventricular function and collagen content after regression of hypertensive hypertrophy. Hypertension 13: 43–50

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Silver, M.A., Weber, K.T. (1990). Structural Basis of Left Ventricular Dysfunction: Role of Collagen Network Remodeling and Potential Therapeutic Interventions. In: Brachmann, J., Dietz, R., Kübler, W. (eds) Heart Failure and Arrhythmias. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-75326-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-75326-8_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-75328-2

  • Online ISBN: 978-3-642-75326-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics