Nonlinear Surface and Internal Waves in Rotating Fluids

  • L. A. Ostrovsky
  • Yu. A. Stepanyants
Part of the Research Reports in Physics book series (RESREPORTS)


A class of nonintegrable equations related to a wide range of physical problems including surface and internal waves in rotating ocean is considered. A characteristic feature of these equations is the presence of a broad “dispersionless” band in the frequency spectrum that separates the regions of low- and high-frequency dispersion. The structures of plane and two-dimensional steady-state solutions are studied analytically and numerically. Results of the numerical calculations of non-stationary perturbation dynamics under different initial conditions are presented.


Solitary Wave Internal Wave Nonlinear Wave Oceanic Physic Wave Profile 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    O.M. Braun, I.I. Zelenskaya, Yu.S. Kivshar. Frenkel-Kontorova Model with Far Interaction. Preprint No.2, Inst, of Physics, Ukrainian Acad. Sci., Kiev, 1989, 36 p. (in Russian).Google Scholar
  2. 2.
    V.I. Karpman. Nonlinear Waves in Dispersive Media. Pergamon Press, Oxford, 1975.Google Scholar
  3. 3.
    L.D. Landau, E.M. Lifshits. Hydrodynamics. Nauka, Moscow, 1988.Google Scholar
  4. 4.
    V.I. Shrira. On the long strongly nonlinear waves in rotating ocean. Izvestiya Acad. Nauk SSSR, FAO, 1986, 22, 4, 395–405 (in Russia); Atmospheric and Oceanic Physics, 1986, 22, 4.Google Scholar
  5. V.I. Shrira. Atmospheric and Oceanic Physics. 1986, 22, 4.Google Scholar
  6. 5.
    A.I. Leonov. The effect of Earth rotation on the propagation of weak nonlinear surface and internal long oceanic waves. Annals New York Acad. Sci., 1981, 373, 150–159.MathSciNetGoogle Scholar
  7. 6.
    L.A. Ostrovsky. Nonlinear internal waves in a rotating ocean. Okeanologiya, 1978, 18, 2, 181–191 (in Russian);Google Scholar
  8. L.A. Ostrovsky. Nonlinear internal waves in a rotating ocean. Oceanology, 1978, 18, 2.Google Scholar
  9. 7.
    L.Y. Redekopp. Nonlinear waves in geophysics: Long internal waves. Lectures in Appl.Math., 1983, 20, 29–78.Google Scholar
  10. 8.
    R.G. Grimshaw. Evolution equations for weakly nonlinear long internal waves in a rotating fluid. Stud. Appl. Math., 1985, 73, 1, 1–33.MATHMathSciNetGoogle Scholar
  11. 9.
    C. Katsis, T.R. Akylas. Solitary internal waves in a rotating channel: A numerical study. Phys. Fluids, 1987, 30, 2, 297–301.ADSMATHCrossRefGoogle Scholar
  12. 10.
    S.V. Muzylev. Nonlinear equatorial waves in the ocean. Digest of Reports, 11 All-Union Congress of Oceanographers, Sevastopol, USSR, 1982, 2, 26–27 (in Russian).Google Scholar
  13. 11.
    V.I. Shrira. The propagation of long nonlinear waves in the layer of rotating fluid. Izvestiya Akad. Nauk SSSR, FAO, 1981, 17, 1, 76–81 (in Russian); Atmospheric and Oceanic Physics, 1981, 17, 1.MathSciNetGoogle Scholar
  14. 12.
    B.B. Kadomtsev, V.I. Petviashvili. On the stability of solitary waves in weakly dispersive media. Sov.Phys.-Dokl., 1970, 15, 539–541.ADSMATHGoogle Scholar
  15. 13.
    A.A. Zaitsev. Steady-state solution of the Ostrovsky equation. Digest of Reports, All-Union Meeting on Numerical Methods in the Problem of Tsunami, Krasnoyarsk, USSR, 1987, 58–60 (in Russian).Google Scholar
  16. 14.
    M. Toda. Theory of Nonlinear Lattices. Springer-Verlag, Berlin-Heidelberg-New York, 1981.MATHGoogle Scholar
  17. 15.
    L. Brillouin, M. Parodi. Waves Propagation in Periodic Structures. Dover, 1953.Google Scholar
  18. 16.
    L.A. Ostrovsky. Nonlinear internal waves in the ocean. In: Nonlinear Waves, Nauka, Moscow, 1979, 292–323.Google Scholar
  19. 17.
    D.P. Renouard, Y.Ch. D’Hieres, X.Zhang. An experimental study of strongly nonlinear waves in a rotating system. J. Fluid. Mech., 1987, 177, 381–394.ADSCrossRefGoogle Scholar
  20. 18.
    Sh.M. Khasanov. The propagation of Kelvin’s solitary wave in an absorbing medium. Izvestiya Akad. Nauk SSSR, FAO, 1989, 25, 307–311 (in Russian); Atmosphericand Oceanic Physics, 1989, 25, 3.Google Scholar
  21. 19.
    G.B. Whitham. Linear and Nonlinear Waves. John Wiley & Sons, New York, 1974.Google Scholar
  22. 20.
    L.A. Abramyan, Yu.A. Stepanyants. Structure of two-dimensional solitons in the context of a generalized Kadomtsev-Petviashvili equation. Izvestiya Akad.Nauk SSSR, Radiofizika, 1987, 30, 10, 1175–1180 (in Russian); Radiophysics and Quantum Electronics, 1987, 30, 10.MathSciNetGoogle Scholar
  23. 21.
    V.I. Petviashvili. Equation of an extraordinary soliton. Fizika Plasmy, 1976, 2, 3, 469–472 (in Russian); Plasma Physics, 1976, 2, 3, 257.Google Scholar
  24. 22.
    R.A. Antonova, B.P. Zhvanya, D.G. Lominadze, D.I. Nanobashvili, V.I. Petviashvili, Modeling of vortices in a homogeneous magnetized plasma in a shallow rapidly rotating liquid. Fizika Plasmy, 1987, 13, 11, 1327–1331 (in Russian); Plasma Physics, 1987, 13, 11.Google Scholar
  25. 23.
    S.V. Antipov, M.V. Nezlin, V.K. Radionov, A.Yu. Rylov, E.P. Snezhkin, A.S. Trubnikov, A.V. Khutoretsky. The properties of drift solitons in a plasma as inferred from model experiments on a rapidly rotating shallow water. Fizika Plasmy, 1988, 14, 9, 1104–1121 (in Russian); Plasma Physics, 1988, 14, 9.Google Scholar
  26. 24.
    S.V. Manakov, V.E. Zakharov, L.A. Bordag, A.R. Its, V.B. Matveev. Two-dimensional solitons of the Kadomtsev-Petviashvili equation and their interaction. Phys. Lett., 1977, 63A, 3, 205–206.CrossRefGoogle Scholar
  27. 25.
    K.A. Gorshkov, L.A. Ostrovsky, V.V. Papko. Interactions and coupled states of solitons as classical particles. Sov. Phys.-JETP, 1976, 71, 2.Google Scholar
  28. 26.
    S.A. Rybak, Yu.I. Skrynnikov. Solitary waves in a thin constant-curvature rod. Akust.Zh., 1990, 36, 4, 548–553 (in Russian).Google Scholar
  29. 27.
    E.S. Benilov, E.N. Pelinovsky. On the theory of wave propagation in dispersionless nonlinear fluctuating media. Sov. Phys.-JETP, 1988, 94, 1, 175–185.Google Scholar

Copyright information

© Springer-Verlag Berlin, Heidelberg 1990

Authors and Affiliations

  • L. A. Ostrovsky
    • 1
  • Yu. A. Stepanyants
    • 1
  1. 1.Institute of Applied PhysicsUSSR Academy of SciencesGorkyUSSR

Personalised recommendations