Advertisement

Painlevé Singular Manifold Equation and Integrability

  • R. Conte
Part of the Inverse Problems and Theoretical Imaging book series (IPTI)

Abstract

We recall the importance of the truncation procedure in PDE Painlevé analysis. Using the recently introduced invariant analysis, we define the singular manifold equations set, in both integrable and nonintegrable cases, as the condition for a truncated expansion to exist. As an application, we derive the correct form of this set for Sawada-Kotera equation.

Keywords

Invariant Analysis Determine Equation Schwarzian Derivative Truncation Procedure Sivashinsky Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J. Weiss, M. Tabor and G. Carnevale, The Painleve property for partial differential equations, J. Math. Phys. 24, 522–526 (1983).CrossRefMATHADSMathSciNetGoogle Scholar
  2. [2]
    J. Weiss, The Painleve property for partial differential equations. II: Backlund transforma-tion, Lax pairs, and the Schwarzian derivative, J. Math. Phys. 24, 1405–1413 (1983).CrossRefMATHADSMathSciNetGoogle Scholar
  3. [3]
    R. Conte, Invariant Painleve analysis of partial differential equations, Phys. Lett. A140, 383–390 (1989).CrossRefMathSciNetGoogle Scholar
  4. [4]
    M. Musette, Painleve-Darboux transformations in nonlinear partial differential equations, these proceedings.Google Scholar
  5. [5]
    R. Conte and M. Musette, Painleve analysis and Backlund transformation in the Kuramoto-Sivashinsky equation, J. Phys. A22, 169–177 (1989).MATHADSMathSciNetGoogle Scholar
  6. [6]
    K. Sawada and T. Kotera, A method for finding N-soliton solutions of the K.d.V. equation and K.d.V.-like equations, Prog. Theor. Phys. 51, 1355–1367 (1974). P. J. Caudrey, R. K. Dodd and J. D. Gibbon, A new hierarchy of Korteweg-de Vries equations, Proc. Roy. Soc. London A351, 407–422 (1976).Google Scholar
  7. [7]
    J. Weiss, Backlund transformation and the Painleve property, J. Math. Phys. 27, 1293–1305 (1986).CrossRefMATHADSMathSciNetGoogle Scholar
  8. [8]
    M. Musette and R. Conte, Third order Lax pair of the Hirota-Satsuma equation by a new invariant Painleve analysis, submitted for publication (1990).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • R. Conte
    • 1
  1. 1.Service de Physique du Solide et de Résonance MagnétiqueCentre d’Etudes Nucléaires de SaclayGif-sur-Yvette CédexFrance

Personalised recommendations