Advertisement

Numerical Construction of Nonlinear Wave Train Solutions of the Periodic Korteweg-de Vries Equation

  • A. R. Osborne
  • E. Segré
Part of the Inverse Problems and Theoretical Imaging book series (IPTI)

Abstract

We discuss a numerical procedure for the construction of exact, nonlinear wave train solutions of the periodic Korteweg-de Vries (KdV) equation. We use an approach which is effectively a nonlinear Fourier decomposition of the wave motion formulated in terms of the periodic inverse scattering transform µ-representation. We construct solutions which have both narrow and broad-banded Fourier spectra and discuss some physical consequences of the propagation of complex, nonlinear wave motions.

Keywords

Ocean Physics Wave Train Nonlinear Wave Equation Nonlinear Normal Mode Cnoidal Wave 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. J. Ablowitz and H. Segur, Solitons and the Inverse Scattering Transform, SIAM, Philadelphia, 1981.Google Scholar
  2. A. Degasperis, Nonlinear wave equations solvable by the spectral transform, in Nonlinear Topics in Ocean Physics, ed. by A. R. Osborne, Elsevier, Amsterdam (1989).Google Scholar
  3. R. K. Dodd, J. C. Eilbeck, J. D. Gibbon and H. C. Morris, Solitons and Nonlinear Wave Equations, Academic Press, London, 1982.MATHGoogle Scholar
  4. B. A. Dubrovin, V. B. Matveev, S. P. Novikov, Nonlinear equation of Korteweg-deVries Type, finite- zone linear operators, and Abelian varieties, Russian Math. Surveys 31: 1 (1976), 59–146.CrossRefMATHMathSciNetGoogle Scholar
  5. H. Flaschka and D. W. McLaughlin, Prog. Theoret. Phys. 55 (1976), 438.CrossRefMATHADSMathSciNetGoogle Scholar
  6. A. R. Osborne, in Soliton Theory: a Survey of Results, ed. by Allan P. Fordy, Manchester University Press (1989).Google Scholar
  7. A. R. Osborne, in Nonlinear Topics in Ocean Physics, ed. by A. R. Osborne, Elsevier, Amsterdam (1989).Google Scholar
  8. A. R. Osborne and L. Bergamasco, Nuovo Cimento B85 (1985), 229.MathSciNetGoogle Scholar
  9. A. R. Osborne and L. Bergamasco, Physica 18D (1986), 26.Google Scholar
  10. A. R. Osborne, M. Petti, M. Liberatore and L. Cavaleri, in Computer Modelling in Ocean Engineering, ed. by B. A. Schrefler and O. C. Zienkeiwicz, Balkema, Rotterdam (1988) 99.Google Scholar
  11. A. R. Osborne and E. Segre, in press Physica D (1990).Google Scholar
  12. E. R. Tracy, J. W. Larson, A. R. Osborne and L. Bergamasco, Physica 32D (1988), 83.MATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • A. R. Osborne
    • 1
  • E. Segré
    • 1
  1. 1.Istituto di Fisica Generale dell’Università and Istituto di Cosmo-GeofisicaCNRTorinoItaly

Personalised recommendations