Advertisement

Some High Energy Cross Sections from an Inverse Point of View

  • M. Blažek
Conference paper
Part of the Inverse Problems and Theoretical Imaging book series (IPTI)

Abstract

Recent experimental results on high energy multiplicity distributions serve as motivation for seeking the relation between asymptotic and full probability distributions. Several examples from quantum statistics show successively how the Poisson transform helps to restore the full probability by means of its high energy asymptotics. Also the influence of the leading particle effect on the form of the Poisson transform is mentioned there. It is called for attempts to generalize the approach presented here.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gelfand I. M. and Levitan B.M., Izvestiya Akad. Nauk CCCP (ser. matem.) 15 (1951) 309.MATHMathSciNetGoogle Scholar
  2. 2.
    Agranowich Z.S. and Marchenko V.A.: The inverse problem of scattering theory. Kharkov 1960 (english translation: Gordon and Breach, N.Y., 1963 ).Google Scholar
  3. 3.
    Blazek Mm Commun. Math. Phys. 3 (1966) 282.CrossRefADSGoogle Scholar
  4. 4.
    Chadan K. and Sabatier P.C.: Inverse problems in quantum scattering theory. Springer, N.Y., 1977 (russian translation: Mir, Moscow, 1980 ).Google Scholar
  5. 5.
    Koba Z., Nielsen H.B. and Olesen P., Nucl. Phys. B 40 (1972) 317.CrossRefADSGoogle Scholar
  6. 6.
    Polyakov A.M., Zhur. Eksp. Theor. fiz. 59 (1970) 542 (Soviet Physics JETP 32 (1971) 296.Google Scholar
  7. 7.
    Breakstone A. et al., Phys. Rev. D 30 (1984) 528.CrossRefADSGoogle Scholar
  8. 8.
    Alner G.J. et al., Phys. Lett. 138 B (1984) 304.ADSGoogle Scholar
  9. 9.
    Carruthers P. and Shih C.C., Int’l J. Mod. Phys. A 2 (1987) 1447.CrossRefADSGoogle Scholar
  10. 10.
    Perina J.: Quantum statistics of linear and nonlinear optical phenomena. Reidel, Dordrecht, 1984.Google Scholar
  11. 11.
    Biyajima M., Prog To Theor. Phys. 69 (1983) 966.CrossRefADSGoogle Scholar
  12. 12.
    Biyajima M. and Suzuki N., Phys. Lett. 143 B (1984) 463.ADSGoogle Scholar
  13. 13.
    Gardiner C.V. Handbook of stochastic methods. Springer, Berlin, 1983.MATHGoogle Scholar
  14. 14.
    Shih C.C., Phys. Rev. D 33 (1986) 3391.CrossRefADSGoogle Scholar
  15. 15.
    Lam G.S. and Walton A.M., Phys. Lett. 140 B (1984) 246.Google Scholar
  16. 16.
    Blažek M., Z. Phvs. C 32 (1986) 309.ADSGoogle Scholar
  17. 17.
    Blažek M., Phys. Rev. D. 35 (1987) 102CrossRefADSGoogle Scholar
  18. 18.
    Blažek M., Czech. J. Phys. B 36 (1986) 681.CrossRefADSGoogle Scholar
  19. 19.
    Blažek M., Z. Phys.C 26 (1984) 455 and Czech. J. Phys. B 34 (1984) 838.CrossRefADSGoogle Scholar
  20. 20.
    Blažek M. and Blafcek T., Phys. Lett. 159 B (1985) 403.Google Scholar
  21. 21.
    Biyajima M., Fowler G.N., Friedländer E.M. et al., preprint, to be published.Google Scholar
  22. 22.
    Blažek M., Czech. J. Phys. B 38 (1988) 705.CrossRefADSGoogle Scholar
  23. 23.
    Blažiek M. and Blazek T., Czech. J. Physo B (1989) 361.Google Scholar
  24. 24.
    Barth M. etal., Nucl. Phys. B 192 (1981) 189; Ajinenko I.V. et al., Z. Phys. C 16 (1983) 291.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • M. Blažek
    • 1
  1. 1.Institute of PhysicsEPRC, Slovak Academy of SciencesBratislavaCzechoslovakia

Personalised recommendations