Advertisement

Inverse Problems for Dispersive Biological Media

  • B. De Facio
Conference paper
Part of the Inverse Problems and Theoretical Imaging book series (IPTI)

Abstract

Recently electromagnetic pulses with widths of picoseconds, 10−12 s, and even femtoseconds, 10−15 s, have become available. This opens a new field of inquiry called ultrafast spectroscopy. This new family of tools also provides new ways to look at old problems. This note will present a tutorial review of how these pulses together with inverse problems may enable scientists to address certain biological problems.

Keywords

Inverse Problem Electric Dipole Moment Dielectric Response Spatial Dispersion Electromagnetic Pulse 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G.E. Stahl, J. Univ. Montpellier Med. Sch., 1861.Google Scholar
  2. 2.
    I. Progigine and I. Stengers Order Out of Chaos ( Bantam, New York, 1984.Google Scholar
  3. 3.
    F. Dyson, Rev. Mod. Phys. 51, 447 (1979).CrossRefADSGoogle Scholar
  4. 4.
    R. Albanese, Private Communication (June, 1989 ).Google Scholar
  5. 5.
    B.S. Guttman and John W. Hopkins III, Understanding Biology (Harcourt Brace Jovanovich Inc., New York, 1983 ).Google Scholar
  6. 6.
    J. von Neumann, Theory of Self-Reproducing Automata, Edited by A.W. Burks ( University of Illinois press, Urbana, 1966 ).Google Scholar
  7. 7.
    F. Hynne and R.K. Bullough, Phil. Trans. Roc. London A321, 305–360 (1987); ibid A312, 251–293 (1984).CrossRefADSMathSciNetGoogle Scholar
  8. 8.
    J. McConnell, Rotational Brownian Motion and Dielectric Theory ( Academic, New York, 1980 ).Google Scholar
  9. 9.
    L.E. Reichl, Phys. Rev. Lett. 49, 85 (1982).CrossRefADSGoogle Scholar
  10. 10.
    J. Kerr, Phil. Mag. 50, 337 (1875); ibid (157 (1880).Google Scholar
  11. 11.
    C.T. O’Konski, Biophys. J. 5, 607 (1965).CrossRefGoogle Scholar
  12. 12.
    S.H. Fine and W.P. Hansen, Appl. Optics 10, 2350 (1971).CrossRefADSGoogle Scholar
  13. 13.
    D.J. Kaup, Rocky Mount. Math. J. 8, 71 (1978); Physica 6D, 143 (1983).Google Scholar
  14. 14.
    A.C. Scott, Rev. Mod. Phys. 47, 487 (1975).CrossRefADSGoogle Scholar
  15. 15.
    K. Wüthrich, Adv. Chem. Res. 22, 36–44 (1989).CrossRefGoogle Scholar
  16. 16.
    L.H. Kaufman, On Knots, Ann Math Studies, Vol. 115 ( Princeton University Press, Princeton, NJ, 1987 ), 480 pp.Google Scholar
  17. 17.
    E.H. Grant, R.H. Sheppard and G.P. South, Dielectric Behavior of Molecules in Solution (Oxford University Press, Oxford, 1978 ).Google Scholar
  18. 18.
    P. Debye, Polar Molecules ( The Chemical Catelog Company, New York, 1929 ).MATHGoogle Scholar
  19. 19.
    J. McConnell, Rotational Brownian Motion and Dielectric Theory ( Academic Press, New York, 1980.Google Scholar
  20. 20.
    L. Reichl, Phys. Rev. A24, 1617 (1981).CrossRefADSMathSciNetGoogle Scholar
  21. 21.
    L.C. Sparling, L. Reichl and J.E. Sedlak, Phys. Rev. A33, 699 (1986).CrossRefADSGoogle Scholar
  22. 22.
    B. DeFacio (in preparation), and work in progress with Mr. C.R. Dick.Google Scholar
  23. 23.
    J.P. Corones and A. Karlsson, Inv. Probs 4, 643 (1988).CrossRefMATHADSMathSciNetGoogle Scholar
  24. 24.
    A. Karlsson, Inv. Probs 3, 691 (1987).CrossRefMATHADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • B. De Facio
    • 1
  1. 1.Department of Physics and AstronomyUniversity of MissouriColumbiaUSA

Personalised recommendations