Application of Singular Systems to Some Data Reduction Problems in Modern Optics

  • M. Bertero
  • C. De Mol
  • E. R. Pike
Conference paper
Part of the Inverse Problems and Theoretical Imaging book series (IPTI)

Abstract

Many data reduction or “inverse” problems in optics originate from scattering or imaging experiments, where radiation is incident on a sample as a probe of some unknown characteristic of that sample. The scattered radiation is measured after interaction with the sample by means of a detector or a set of detectors. Since, in most problems, the property of interest is not directly accessible to measurement, the output of the detectors has to be processed and interpreted in order to provide as much relevant information as possible about the required structural function characterizing the sample. As usual in optics, we will call this unknown function the object and denote it by f(x), where x represents a one- or multi-dimensional space or time (or both space and time) variable, according to the problem under study. When considering an inverse problem, we shall assume that the direct problem has been solved, i. e. that we have a good mathematical model describing the interaction between the radiation and the sample and associating the corresponding data function g(x), also called the image, to a given object f(x). Moreover, we will restrict ourselves to situations where a linear or linearized model holds true or is good enough in practice, so that the problem of recovering the object f(x) from its image g(x) is a linear inverse problem. In the present paper, we review the basic features of some data reduction problems in which we have been particularly interested during the last few years. They relate to several practical applications, namely various situations in confocal scanning microscopy and various techniques for particle sizing by laser light scattering. More generally, the problems discussed hereafter could be viewed as case studies for many other applied linear inverse problems encountered in optics and other fields.

Keywords

Attenuation Turbidity Autocorrelation Macromolecule Convolution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    H. C. van de Hulst: “Light Scattering by Small Particles” (Dover, 1957 )Google Scholar
  2. [2]
    H. Z. Cummins and E. R. Pike (eds): “Photon Correlation and Light Beating Spectroscopy” (Plenum Press, 1974 )Google Scholar
  3. [3]
    J. W. Goodman: “Introduction to Fourier Optics” (McGraw-Hill, 1968 )Google Scholar
  4. [4]
    T. Wilson and C. Sheppard: “Theory and Practice of Scanning Microscopy” (Academic Press, 1984 )Google Scholar
  5. [5]
    J. G. McWhirter and E. R. Pike: J. Phys. A11 (1978): 1729Google Scholar
  6. [6]
    M. Bertero and E. R. Pike: Optica Acta 30 (1983): 1043 and M. Bertero, P. Boccacci and E. R. Pike: Inverse Problems 1 (1985): 111CrossRefMATHADSMathSciNetGoogle Scholar
  7. [7]
    M. Bertero, C. De Mol and E. R. Pike: Inverse Problems 2 (1986): 247CrossRefMATHADSGoogle Scholar
  8. [8]
    C. W. Groetsch: “The theory of Tikhonov regularization for Fredholm integral equations of the first kind” (Pitman, 1984 )Google Scholar
  9. [9]
    M. Bertero, P. Boccacci and E. R. Pike: Proc. R. Soc. Lond. A383 (1982): 15 and A393 (1984): 51MATHGoogle Scholar
  10. [10]
    M. Bertero, C. De Mol and G. A. Viano: Optica Acta 27 (1980): 307CrossRefADSGoogle Scholar
  11. [11]
    M. Bertero and E. R. Pike: Optica Acta 29 (1982): 727 and 1599CrossRefADSMathSciNetGoogle Scholar
  12. [12]
    M. Bertero, C. De Mol, E. R. Pike and J. G. Walker: Optica Acta 31 (1984): 923CrossRefADSMathSciNetGoogle Scholar
  13. [13]
    M. Bertero, C. De Mol and E. R. Pike: Inverse Problems 1 (1985): 301 and 4 (1988): 573CrossRefMATHADSMathSciNetGoogle Scholar
  14. [14]
    G. Toraldo di Francia: J. Opt. Soc. Am. 59 (1969): 799CrossRefADSGoogle Scholar
  15. [15]
    C. E. Shannon and W. Weaver: “The Mathematical Theory of Communication” (Univ. of Illinois Press, 1949 )MATHGoogle Scholar
  16. [16]
    M. Bertero and C. De Mol: Atti della Fondazione Giorgio Ronchi, Anno XXXVI (1981): 619Google Scholar
  17. [17]
    M. Bertero, P. Brianzi, E. R. Pike and L. Rebolia: Proc. R. Soc. Lond. A415 (1988): 257CrossRefMATHADSMathSciNetGoogle Scholar
  18. [18]
    M. Bertero, P. Brianzi, E. R. Pike: Proc. R. Soc. Lond. A398 (1985): 23 and Inverse Problems 1 (1985): 1MATHMathSciNetGoogle Scholar
  19. [19]
    M. Bertero, F. A. Grunbaum: Inverse Problems 1 (1985): 181 M. Bertero, F. A. Grunbaum and L. Rebolia: Inverse Problems 2 (1986): 131CrossRefADSMathSciNetGoogle Scholar
  20. [20]
    M. Bertero, P. Brianzi, E. R. Pike, G. De Villiers, K. H. Lan and N. Ostrowsky: J. Chem. Phys. 82 (1985): 1551Google Scholar
  21. [21]
    F. Gori and G. Guattari: Inverse Problems 1 (1985): 67CrossRefMATHADSMathSciNetGoogle Scholar
  22. [22]
    M. Bertero, C. De Mol and E. R. Pike: J. Opt. Soc. Am. A4 (1987): 1748Google Scholar
  23. [23]
    M. Bertero, P. Brianzi and E. R. Pike: Inverse Problems 3 (1987): 195CrossRefMATHADSMathSciNetGoogle Scholar
  24. [24]
    M. Young, R. E. Davies, J. Walker, E. R. Pike and M. Bertero: Europhysics Letters 9 (1989): 773CrossRefADSGoogle Scholar
  25. [25]
    M. Bertero, P. Boccacci, M. Defrise, C. De Mol and E. R. Pike: Inverse Problems 5 (1989): 441CrossRefADSMathSciNetGoogle Scholar
  26. [26]
    M. Young, R. E. Davies, J. Walker and E. R. Pike: in preparationGoogle Scholar
  27. [27]
    M. Bertero, P. Boccacci: “Computation of the singular system for a class of integral operators related to data inversion in confocal microscopy”, to appear in Inverse ProblemsGoogle Scholar
  28. [28]
    M. Bertero, P. Boccacci, G. J. Brakenhoff, F. Malfanti and H. T. M. van der Voort: “Three-dimensional image restoration and super-resolution in fluorescence confocal microscopy”, to appear in J. MicroscopyGoogle Scholar
  29. [29]
    J. Walker, E. R. Pike and M. Bertero: U. K. Patent Application N9 89 13, 129–6Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • M. Bertero
    • 1
    • 2
  • C. De Mol
    • 3
  • E. R. Pike
    • 4
    • 5
  1. 1.Dipartimento di Fisicadell’Università di GenovaGenovaItaly
  2. 2.Istituto Nazionale di Fisica NucleareGenovaItaly
  3. 3.Département de MathématiqueUniversité Libre de BruxellesBruxellesBelgium
  4. 4.Department of PhysicsKing’s CollegeStrandLondonUK
  5. 5.RSREGreat Malvern, WorcesterUK

Personalised recommendations