Advertisement

Primary Productivity and Growth Dynamics of the “Brown Tide” in Long Island Embayments

  • Elizabeth M. Cosper
  • Edward J. Carpenter
  • Matthew Cottrell
Part of the Coastal and Estuarine Studies book series (COASTAL, volume 35)

Abstract

Many coastal embayments of Long Island have recently experienced algal blooms. These began in the summer of 1985 and are unprecedented in their persistence (~6 months) and density (>109 cells l-1) relative to previous summers (Lively et al., 1983; Bruno et al., 1983). These monospecific blooms were popularly called the “brown tide” due to the resulting water color. The blooms markedly reduced the extent of eelgrass (Zostera marina) beds because of increased light attenuation, and decimated populations of commercially valuable bay scallops (Argopecten irradians irradians) since the scallops were unable to graze adequately and starved to death (Cosper et al., 1987).

Keywords

Specific Growth Rate Phytoplankton Biomass Phytoplankton Bloom Blue Point Brown Tide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, D.M., D.M. Kulis, J.A. Orphanos, and A.R. Ceurvels. 1982. Distribution of the toxic red tide dinoflagellate Gonyaulax tamarensis in the southern New England region. Est. Coast. Shelf Sci. 14: 447–458.Google Scholar
  2. Anderson, D.M., D.M. Kulis, C.M. Cetta, and E.M. Cosper. 1989. Immuno fluorescent detection of the brown tide organism, Aureococcus anophagefferens. In: “Novel Phytoplankton Blooms: Causes and Impacts of Recurrent Brown Tides and Other Unusual Blooms”, Cosper, E.M., E.J. Carpenter and V.M. Bricelj (Eds.), Lecture Notes on Coastal and Estuarine Studies, Springer-Verlag, Berlin, pp. 213–228.Google Scholar
  3. Bidigare, R.R. 1989. Photosynthetic pigment composition of the brown tide alga: unique chlorophyll and carotenoid derivatives. In: “Novel Phytoplankton Blooms: Causes and Impacts of Recurrent Brown Tides and Other Unusual Blooms”, Cosper, E.M., E.J. Carpenter and V.M. Bricelj (Eds.), Lecture Notes on Coastal and Estuarine Studies, Springer-Verlag, Berlin, pp. 57–75.Google Scholar
  4. Bruno, S.F., R.D. Staker, G.M. Sharma, and J.T. Turner. 1983. Primary productivity and phytoplankton size fraction dominance in a temperate North Atlantic estuary. Estuaries 6: 200–211.CrossRefGoogle Scholar
  5. Campbell L., L.P. Shapiro, E. Haugen and L. Morris. 1989. Immunochemical approaches to the identification of the ultraplankton: assets and limitations. In: “Novel Phytoplankton Blooms: Causes and Impacts of Recurrent Brown Tides and Other Unusual Blooms”, Cosper, E.M., E.J. Carpenter and V.M. Bricelj (Eds.), Lecture Notes on Coastal and Estuarine Studies, Springer-Verlag, Berlin, pp. 39–56.Google Scholar
  6. Caron, D.A., E.L. Lim, H. Kunze, E.M. Cosper and D.M. Anderson. Trophic interactions between nano- and microzooplankton and the “brown tide”. In: “Novel Phytoplankton Blooms: Causes and Impacts of Recurrent Brown Tides and Other Unusual Blooms”, Cosper, E.M., E.J. Carpenter and V.M. Bricelj (Eds.), Lecture Notes on Coastal and Estuarine Studies, Springer-Verlag, Berlin, pp. 265–294.Google Scholar
  7. Carpenter, E.J. and L. Campbell. 1988. Diel patterns of cell division and growth rates of Synechococcus spp. in Long Island Sound. Mar. Ecol. Prog, ser. 47: 179–183.Google Scholar
  8. Coleman, A.W., M.J. Maguire, and J.R. Colman. 1981. Mithramycin and 4’-6-diamidino-2-phenylindole (DAPI) - DNA staining for fluorescence microspectrophotometric measurement of DNA in nuclei, plastid, and virus particles. J. Histochem. Cytochem. 29: 959–968.Google Scholar
  9. Cosper, E.M. 1987. Culturing the “Brown Tide” alga. Appl. Phycol. Forum 4: 3–5.Google Scholar
  10. Cosper, E.M., W.C. Dennison, E.J. Carpenter, V.M. Bricelj, J.G. Mitchell, S.H. Kuenstner, D.O. Colflesh, and M. Dewey. 1987. Recurrent and persistent “Brown Tide” blooms perturb coastal marine ecosystem. Estuaries 10: 284–290.CrossRefGoogle Scholar
  11. Cosper, E.M., W. Dennison, A. Milligan, E.J. Carpenter, C. Lee, J. Holzapfel and L. Milanese. 1989. An evaluation of the environmental factors important to initiating and sustaining “brown tide” blooms. In: “Novel Phytoplankton Blooms: Causes and Impacts of Recurrent Brown Tides and Other Unusual Blooms”, Cosper, E.M., E.J. Carpenter and V.M. Bricelj (Eds.), Lecture Notes on Coastal and Estuarine Studies, Springer-Verlag, Berlin, pp. 317–340.Google Scholar
  12. Cottrell, M.T., E.M. Cosper and E.J. Carpenter, in prep. The specific growth rate of in situ populations of a blooming chlorophyte in Great South Bay, New York: comparison with turnover rates of photic zone phytoplankton carbon.Google Scholar
  13. Dzurica, S., C. Lee, E.M. Cosper and E.J. Carpenter. 1989. Role of environmental variables, specifically organic compounds and micronutrients, in growth of the “brown tide” organism. In: “Novel Phytoplankton Blooms: Causes and Impacts of Recurrent Brown Tides and Other Unusual Blooms”, Cosper, E.M., E.J. Carpenter and V.M. Bricelj (Eds.), Lecture Notes on Coastal and Estuarine Studies, Springer-Verlag, Berlin, pp. 229–252.Google Scholar
  14. Hardy, C.D. 1976. A preliminary description of the Peconic Bay Estuary. Marine Sciences Research Center Special Report, 3, MSRC, State University of New York, Stony Brook, New York.Google Scholar
  15. Lewin, J., R.E. Norris, S.W. Jeffrey and B.E. Pearson. 1977. An aberrant chrysophycean alga Pelagococcus subviridis gen. et sp. nov. from the North Pacific Ocean. J. Phycol. 13: 259–266.Google Scholar
  16. Lively, J.S., Z. Kaufman, and E.J. Carpenter. 1983. Phytoplankton ecology of a barrier island estuary: Great South Bay, New York. Est. Coast. Shelf Sci. 16: 51–68.Google Scholar
  17. McDuff, R.E. and S.W. Chisholm. 1982. The calculation of in situ growth rates of phytoplankton populations from fractions of cells undergoing mitosis: a clarification. Limnol. Oceanogr. 27: 783–788.Google Scholar
  18. Parsons, T.R., M. Takahashi and B. Hargrave. 1977. Biological oceanographic processes. Pergamon Press, New York. 332 p.Google Scholar
  19. Pienaar, R.N. 1980. Chrysophytes. In: Phytoflagellates, (ed.) Cox, Elsevier North Holland, Inc., pp. 213–242.Google Scholar
  20. Ryther, J.H. 1954. The ecology of phytoplankton blooms in Moriches Bay and Great South Bay, Long Island, New York. Bull. 106: 198–209.Google Scholar
  21. Ryther, J.H. 1989. Historical perspective of phytoplankton blooms on Long Island and the green tides of the 1950’s. In; “Novel Phytoplankton Blooms: Causes and Impacts of Recurrent Brown Tides and Other Unusual Blooms”, Cosper, E.M., E.J. Carpenter and V.M. Bricelj (Eds.), Lecture Notes on Coastal and Estuarine Studies, Springer-Verlag, Berlin, pp. 375–381.Google Scholar
  22. Ryther, J.H., R.F. Vaccaro, E.M. Hulbert, C.S. Yentsch, and R.R.L. Guillard. 1958. Report on a survey of the chemistry, biology and hydrography of Great South Bay and Moriches Bay conducted during June and September, 1958 for the Township of Islip and Brookhaven, Long Island, New York. Woods Hole Oceanographic Institute, Ref. #58–57, unpublished manuscript.Google Scholar
  23. Sandgren, C.D. 1983 a. Survival strategies of chrysophycean flagellates: reproduction and the formation of resistant resting cysts. In: Survival Strategies of the Algae, (ed.) Fryxell, Cambridge Univ. Press, Cambridge, pp. 23–48.Google Scholar
  24. Sandgren, C.D. 1983 b. Morphological variability in populations of chrysophycean resting cysts. I. Genetic (interclonal) and encystment temperature effects on morphology. J. Phycol. 19: 64–70.Google Scholar
  25. Sieburth, J.McN., P.W. Johnson and P.E. Hargraves. 1988. Ultrastructure and ecology of Aureococcus anophagefferens gen. et sp. nov. (Chrysophyceae); the dominant picoplankter during a bloom in Narragansett Bay, Rhode Island, Summer 1985. J. Phycol. 24: 416–425.CrossRefGoogle Scholar
  26. Sieburth, J.McN. and P.W. Johnson. 1989. Picoplankton ultrastructure: a decade of preparation for the brown tide alga, Aureococcus anophagefferens. In: “Novel Phytoplankton Blooms: Causes and Impacts of Recurrent Brown Tides and Other Unusual Blooms”, Cosper, E.M., E.J. Carpenter and V.M. Bricelj (Eds.), Lecture Notes on Coastal and Estuarine Studies, Springer-Verlag, Berlin, pp. 1–22.Google Scholar
  27. Smayda, T.J. 1971. Normal and accelerated sinking of phytoplankton in the sea. Marine Geol. 11: 105–122.CrossRefGoogle Scholar
  28. Strickland, J.D. and T.R. Parsons. 1972. A practical handbook of seawater analysis. Bull. Fish. Res. Bd. Canada, 167.Google Scholar
  29. Throndsen, J. and S. Kristiansen. 1985. Pelagococcus subviridis as a major component of the nannoplankton at Haltenbanken, Norwegian Sea in July 1982. Abstrs, second International Phycol. Congr., Copenhagen p. 160.Google Scholar
  30. Vesk, M. and S.W. Jeffrey. 1987. Ultrastructure and pigments of two strains of the picoplanktonic alga Pelagococcus subviridis (Chrysophyceae). J. Phycol. 23: 322–336.Google Scholar
  31. Waterbury, J.B., Watson, S.W., Valois, F.W., Franks, D.G. (1986). Biological and ecological characterization of the marine unicellular cyanobacterium Synechococcus. In: Photosynthetic picoplankton, Piatt, T. and W.K.W. Li (Eds.). Can. Bull. Fish. Aquat. Sci. 214: 71 - 120.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • Elizabeth M. Cosper
    • 1
  • Edward J. Carpenter
    • 1
  • Matthew Cottrell
    • 1
  1. 1.Marine Sciences Research CenterState University of New YorkStony BrookUSA

Personalised recommendations