Lipid Composition and Nutritional Value of the Brown Tide Alga Aureococcus anophagefferens

  • V. Monica Bricelj
  • Nicholas S. Fisher
  • James B. Guckert
  • Fu-Lin E. Chu
Part of the Coastal and Estuarine Studies book series (COASTAL, volume 35)


Blooms of the small (ca. 2 μm diameter) coccoid chrysophyte, Aureococcus anophagefferens, first occurred in 1985 in several coastal embayments of the N.E. U.S., attaining cell densities on the order of 109 l-1 (Cosper et al., 1987; Sieburth et al., 1988). This species has not been previously described nor has its biochemical composition been determined. Biochemical analysis, particularly of this cell’s lipid components, is important for understanding its nutritional value for marine herbivores which may feed on it.


Fatty Acid Composition Polyunsaturated Fatty Acid Neutral Lipid Brown Tide Thalassiosira Pseudonana 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ackman, R.G., 1982. Fatty acid metabolism of bivalves. In: Biochemical and physiological approaches to shellfish nutrition. Proc. 2nd Int. Conf. Aquaculture Nutr., G.D. Pruder et al. (Eds.), World Mariculture Soc. Spec. Publ. No. 2, Louisiana State University, pp.358–375.Google Scholar
  2. Ackman, R.G. and R.D. Burgher. 1965. Cod liver oil fatty acids as secondary reference standards in the GLC of polyunsaturated fatty acids of animal origin. Analysis of a dermal oil of the Atlantic leatherback turtle. J. Am. Oil Chem. Soc. 42: 38–42.PubMedCrossRefGoogle Scholar
  3. Bligh, E.G. and W.M. Dyer, 1959. A rapid method of lipid extraction and purification. Can. J. Biochem. Physiol. 35: 911–917.CrossRefGoogle Scholar
  4. Bricelj, V.M. and S. Kuenstner. 1989. Effects of the “brown tide” on the feeding physiology, and growth of bay scallops and mussels. In: “Novel Phytoplankton Blooms: Causes and Impacts of Recurrent Brown Tides and Other Unusual Blooms”. Cosper, E.M., E.J. Carpenter and V.M. Bricelj (Eds.). Lecture Notes on Coastal and Estuarine Studies. Springer-Verlag, Berlin, pp. 593–511.Google Scholar
  5. Bricelj, V.M., J. Epp and R.E. Malouf. 1987. Intraspecific variation in reproductive and somatic growth cycles of bay scallops Argopecten irradians. Mar. Ecol. Prog. Ser. 36: 123–137.Google Scholar
  6. Chu, F.-L.E. and K.L. Webb. 1984. Polyunsaturated fatty acids and neutral lipids in developing larvae of the oyster, Crassostrea virginica. Lipids 19: 815–820.CrossRefGoogle Scholar
  7. Cohen, Z., A. Vonshak and A. Richmond. 1988. Effect of environmental conditions on fatty acid composition of the red alga Porphyridium cruentum: correlation to growth rate. J. Phycol. 24: 328–332.Google Scholar
  8. Cosper, E.M., W.C. Dennison, E.J. Carpenter, V.M. Bricelj, S.H. Kuenstner, D. Colflesh and M. Dewey. 1987. Recurrent and persistent brown tide blooms perturb coastal marine ecosystem. Estuaries 10: 284–290.CrossRefGoogle Scholar
  9. DeLong, E.F. and A.A. Yayanos. 1986. Biochemical function and ecological significance of novel bacterial lipids in deep-sea procaryotes. Appl. Env. Microbiol. 51: 730–737.Google Scholar
  10. Demort, C.L., R. Lowry, I. Tinsley and H.K. Phinney. 1972. The biochemical analysis of some estuarine phytoplankton species. I. Fatty acid composition. J. Phycol. 8: 211–216.Google Scholar
  11. Dobbs, F.C. and J.B. Guckert. 1988. Microbial food resources of the macrofaunal-deposit feeder Ptychodera bahamensis ( Hemichordata: Enteropneusta). Mar. Ecol. Prog. Ser. 45: 127–136.Google Scholar
  12. Enright, C.T., G.F. Newkirk, J.S. Craigie and J.D. Castell. 1986. Evaluation of phytoplankton as diets for juvenile Ostrea edulis. J. Exp. Mar. Biol. Ecol. 96: 1–13.Google Scholar
  13. Fisher, N.S. and R.P. Schwarzenbach. 1978. Fatty acid dynamics in Thalassiosira pseudonana (Bacillariophyceae): implications for physiological ecology. J. Phycol. 14: 143–150.CrossRefGoogle Scholar
  14. Fujii, M. and Y. Yone. 1976. Studies on the nutrition of Red Sea bream. XIII. Effect of dietary linolenic acid and w3 polyunsaturated fatty acids on growth and feed efficiency. Bull. J. Soc. Sci. Fish. 42: 583–588.Google Scholar
  15. Guckert, J.B., C.P. Antworth, P.D. Nichols and D.C. White. 1985. Phospholipid, ester-linked fatty acid profiles as reproducible assays for changes in prokaryotic community structure of estuarine sediments. F.E.M.S. Microbiol. Ecol. 31: 147–158.Google Scholar
  16. Guillard, R.R.L. and J.H. Ryther. 1962. Studies of marine plankton diatoms I. Cyclotella nana Hustedt, and Detonula confervacea (Cleve) Gran. Can. J. Microbiol. 8: 229–239.Google Scholar
  17. Harrington, G.W., D.H. Beach, J.E. Dunham, and G.G. Holz. 1970. The polyunsaturated fatty acids of marine dinoflagellates. J. Protozool. 17: 213–219.PubMedGoogle Scholar
  18. Jones, D.A., A. Kanazawa and K. Ono. 1979. Studies on the nutritional requirements of the larval stages of Penaeus japonicus using microencapsulated diets. Mar. Biol 54: 261–267.Google Scholar
  19. Kates, M. 1964. Bacterial lipids. Adv. Lipid Res. 2: 17–90.Google Scholar
  20. Laing, I., S.D. Utting and R.W.S. Kilada. 1987. Interactive effect of diet and temperature on the growth of juvenile clams. J. Exp. Mar. Biol. Ecol. 113: 23–38.Google Scholar
  21. Langdon, C.J. and M.J. Waldock. 1981. The effect of algal and artificial diets on the growth and fatty acid composition of Crassostrea gigas spat. J. Mar. Biol. Ass. U.K. 61: 431–448.Google Scholar
  22. Nichols, B.W. 1965. Light induced changes in the lipids of Chlorella vulgaris. Biochim. Biophys. Acta 106: 274–279.Google Scholar
  23. Opute, F.I. 1974. Lipid and fatty-acid composition of diatoms. J. Exp. Bot. 25: 823–835.Google Scholar
  24. Orcutt, D.M. and G.W. Patterson. 1974. Effect of light intensity upon lipid composition of Nitzschia closterium (Cylindrotheca fusiformis). Lipids 9: 1000–1003.CrossRefGoogle Scholar
  25. Otsuka, H. and Y. Morimura. 1966. Change of fatty acid composition of Chlorella ellipsoidea during its cell cycle. Plant Cell Physiol. 7: 663–670.Google Scholar
  26. Shifrin, N.S. and S.W. Chisholm. 1981. Phytoplankton lipids: interspecific differences and effects of nitrate, silicate and light-dark cycles. J. Phycol. 17: 374–384.CrossRefGoogle Scholar
  27. Sicko-Goad, L., M.S. Simmons, D. Lazinsky and J. Hall. 1988. Effect of light cycle on diatom fatty acid composition and quantitative morphology. J. Phycol. 24: 1–7.CrossRefGoogle Scholar
  28. Sieburth, J. McN, P.W. Johnson and P.E. Hargraves. 1988. Characterization of Aureococcus anophagefferens Gen. et sp. nov. (Chrysophyceae), the dominant picoplankter during a bloom in Narragansett Bay, Rhode Island, summer 1985. J. Phycol. 24: 416–425.CrossRefGoogle Scholar
  29. Tracey, G.A. 1988. Feeding reduction, reproductive failure, and mortality in Mytilus edulis during the 1985 ‘brown tide’ in Narrangansett Bay, Rhode Island. Mar. Ecol. Prog. Ser. 50: 73–81.Google Scholar
  30. Volkman, J.K., D.J. Smith, G. Eglinton, T.E.V. Forsberg and E.D.S. Corner. 1981. Sterol and fatty acid composition of four marine haptophycean algae. J. Mar. Biol. Ass. U.K. 61: 509–527.Google Scholar
  31. Waldock, M.J. and I.A. Nascimento. 1979. The triacylglycerol composition of Crassostrea gigas larvae fed on different algal diets. Mar. Biol. Letters 1: 77–86.Google Scholar
  32. Waldock, M.J. and D.L. Holland. 1984. Fatty acid metabolism in young oysters Crassostrea gigas: polyunsaturated fatty acids. Lipids 19: 332–336.CrossRefGoogle Scholar
  33. Walne, P.R. 1970. Studies on the food value of nineteen genera of algae to juvenile bivalves of the genera Ostrea, Crassostrea, Mercenaria and Mytilus. Fish. Invest. Minist. Agric. Fish Food (G.B.), Ser. II 26: 62 pp.Google Scholar
  34. Webb, K.L. and F.-L. Chu. 1983. Phytoplankton as a food source for bivalve larvae. In: Biochemical and physiological approaches to shell fish nutrition. Proc. 2nd Int. Conf. Aquaculture Nutr., G.D. Pruder et al. (Eds.), World Mariculture Soc. Spec. Publ. No. 2. Louisiana State University, pp. 272–291.Google Scholar
  35. Wood, B.J.B. 1974. Fatty acids and saponifiable lipids. In: Algal physiology and biochemistry. W.D.P. Stewart (Ed.), Univ. Calif. Press, Berkeley, 236–265.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • V. Monica Bricelj
    • 1
  • Nicholas S. Fisher
    • 1
  • James B. Guckert
    • 2
  • Fu-Lin E. Chu
    • 3
  1. 1.Marine Sciences Research CenterState University of New YorkStony BrookUSA
  2. 2.Institute for Applied MicrobiologyUniversity of TennesseeKnoxvilleUSA
  3. 3.School of Marine Science College of William and MaryVirginia Institute of Marine ScienceGloucester PointUSA

Personalised recommendations