Immunochemical Approaches to the Identification of the Ultraplankton: Assets and Limitations

  • Lisa Campbell
  • Lynda P. Shapiro
  • Elin M. Haugen
  • Lisa Morris
Part of the Coastal and Estuarine Studies book series (COASTAL, volume 35)


During the past decade, it has become obvious that most photosynthetic cells are exceedingly small. We now realize that 50– 80% of the primary production in the open ocean takes place in cells capable of passing through a 3 μm polycarbonate filter (Platt et al., 1983; Li et al., 1983; Glover et al., 1986a). This size fraction is termed the ultraplankton.


Cross Reaction Polycarbonate Filter Brown Tide Emiliania Huxleyi Dunaliella Tertiolecta 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, D. M. and T. P.-O. Cheng. 1988. Intracellular localization of saxitoxins in the dinoflagellate Gonyaulax tamarensis. J. Phycol. 24: 17–22.CrossRefGoogle Scholar
  2. Campbell, L. 1988. Identification of marine chroococcoid cyanobacteria by immunofluorescence. In: Immunochemical approaches to coastal, estuarine and oceaonographic questions, Lecture Notes on Coastal and Estuarine Studies, C.M. Yentsch, F.C. Mague, and P.K. Horan (eds.) Springer Verlag pp. 208–229.Google Scholar
  3. Campbell, L. and E.J. Carpenter. 1987. Characterization of phycoerythrin-containing Synechococcus spp. by immunofluorescence. J. Plank. Res., 9: 1167–1181.Google Scholar
  4. Campbell, L., E.J. Carpenter and V.J. Iacono. 1983. Identification and enumeration of marine chroococcoid cyanobacteria by immunofluorescence. Appl. Environ. Microbiol., 46: 553–559.Google Scholar
  5. Farr, A.G. and P.K. Nakane. 1981. Immunohistochemistry with enzyme labeled antibodies: a brief review. J. Immunol. Methods. 47: 129–144Google Scholar
  6. Fawley, M.W., S.J. Morton, K.D.Stewart and K.D. Mattox. 1987. Evidence for a common evolutionary origin of light-harvesting fucoxanthin chlorophyll a/c-protein complexes of Pavlova gyrans (Prymnesiophyceae) and Phaeodactylum tricornutum (Bacillariophyceae). J. Phycol. 23: 377–381.Google Scholar
  7. Fawley, M.W., K.D. Steward and K.R. Mattox. 1986. The novel light-harvesting pigment-protein complex of Mantoniella squamata ( Chlorophyta ): Phylogenetic implications. J. Mol. Evol. 23: 168–176.Google Scholar
  8. Feller, R.J. 1984. Serological tracers of meiofaunal food webs. Hydrobiologia 118: 119–125.CrossRefGoogle Scholar
  9. Feller, R.J., G.L. Taghon, E.D. Gallagher, G.E. Kenny and P.A. Jumars. 1979. Immunological methods for food web analysis in a soft-bottom benthic community. Mar. Biol. 54: 61–74.CrossRefGoogle Scholar
  10. Feller, R.J., G. Zagursky and E.A. Day. 1985. Deep-sea food web analysis using cross-reacting antisera. Deep-Sea Res. 32: 485–497.CrossRefGoogle Scholar
  11. Friedmann, A.L. and R.S. Alberte. 1987. Phylogenetic distribution of the major diatom light-harvesting pigment-protein determined by immunological methods. J. Phycol. 23: 427–433.CrossRefGoogle Scholar
  12. Gallagher, E.D., J.P. Grassle, D.D. Trueblood, and M.G. Gleason. 1988. Preparation and use of monospecific antisera to Capitella sp.I. In: Immunochemical approaches to coastal, estuarine and oceaonographic questions, Lecture Notes on Coastal and Estuarine Studies, C.M. Yentsch, F.C. Mague, and P.K. Horan (eds.) Springer Verlag p. 99.Google Scholar
  13. Glover, H.E., L. Campbell and B.B. Prezelin. 1986a. Contribution of Synechococcus spp. to size-fractionated primary productivity in three water masses in the Northwest Atlantic. Mar. Biol. 91: 193–203.Google Scholar
  14. Glover, H.E., M.D. Keller and R.R.L. Guillard. 1986b. Light quality and oceanic ultraphytoplankton. Nature 319: 142–143.CrossRefGoogle Scholar
  15. Glover, H.E., M.D. Keller and R.W. Spinrad. 1987. The effects of light quality and intensity on photosynthesis and growth of marine eukaryotic and prokaryotic phytoplankton clones. J. Exp. Mar. Biol. Ecol. 105: 137–159.Google Scholar
  16. Grisley, M.S. and P.R. Boyle. 1985. A new application of serological techniques to gut content analysis. J. Exp. Mar. Biol. Ecol. 90: 1–9.Google Scholar
  17. Guillard, R.R.L. and J.H. Ryther. 1962. Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt, and Detonula confervaca (Cleve) Gran. Can. J. Microbiol. 8: 229–239.Google Scholar
  18. Hooks, C.E., R.R. Bidigare, M.D. Keller and R.R.L. Guillard. 1988. Coccoid eukaryotic marine ultraplankters with four different HPLC pigment signatures. J. Phycol. 24: 571–580.Google Scholar
  19. Johnson, P.W. and J. McN. Sieburth. 1979. Chroococcoid cyanobacteria in the sea: A ubiquitous and diverse phototrophic biomass. Limnol. Oceanogr. 24: 928–935.Google Scholar
  20. Johnson, P.W. and J. McN. Sieburth. 1982. In situ morphology and occurrence of eucaryotic phototrophs of bacterial size in the picoplankton of estuarine and oceanic waters. J. Phycol. 18: 318–327.Google Scholar
  21. Keller, M.D., R.C. Selvin, W. Claus and R.R.L. Guillard. 1987. Media developed for the culture of oceanic ultraplankton. J. Phycol. 23: 633–638.CrossRefGoogle Scholar
  22. Li, W.K.W., D.V. Subba Rao, W.G. Harrison, J.C. Smith, J.J. Cullen, B. Irwin and T. Piatt. 1983. Autotrophic picoplankton in the tropical ocean. Science 219: 292–295.PubMedCrossRefGoogle Scholar
  23. Murphy, L.S. and E.M. Haugen. 1985. The distribution and abundance of phototrophic ultraplankton in the North Atlantic. Limnol. Oceanogr. 30: 47–58.Google Scholar
  24. Nicolas, M.-T., C.H. Johnson, J.-M. Bassot, and J.W. Hastings. 1985. Immunogold labeling of organelles in the bioluminescent dinoflagellate Gonyaulax polyedra with anti-luciferinase antibody. Cell Biol. Internatl. Reports 9: 797–802.Google Scholar
  25. Platt, T., D.V. Subba Rao, and B. Irwin. 1983. Photosynthesis of picoplankton in the oligotrophic ocean. Nature 301: 702–704.CrossRefGoogle Scholar
  26. Shapiro, L.P. and R.R.L. Guillard. 1986. Physiology and ecology of marine eukaryotic ultraplankton. In: Photosynthesis in the sea, T. Piatt and W.K.W. Li (eds.). Can. J. Fish. Aquat. Sci. 214: 371–389.Google Scholar
  27. Stites, D.P., J.D. Stobo and J.V. Wells (eds.). 1987. Clinical Immunology. Appleton and Lange. p.272.Google Scholar
  28. Stockner, J.G. and N.J. Antia. 1986. Algal picoplankton from marine and freshwater systems: A multidisciplinary perspective. Can. J. Fish. Aquat. Sci. 43: 2472–2503.Google Scholar
  29. Theilacker, G.H., A.S. Kimball and J.S. Trimmer. 1986. Use of an ELISPOT immunoassay to detect euphausid predation on larval anchovy. Mar. Ecol. Prog. Ser. 30: 127–131.Google Scholar
  30. Ward, B.B. and A.F. Carlucci. 1985. Marine ammonia- and nitrite-oxidizing bacteria: Serological diversity determined by immunofluorescence in culture and in the environment. Appl. Environ. Microbiol. 50: 194–201.Google Scholar
  31. Waterbury, J.B., S.W. Watson, R.R.L. Guillard and L.E. Brand. 1979. Widespread occurrence of a unicellular marine planktonic cyanobacterium. Nature (London) 277: 293–294.CrossRefGoogle Scholar
  32. Wood, A.M. 1985. Adaptation of photosynthetic apparatus of marine ultraphytoplankton to natural light fields. Nature 316: 253–255.CrossRefGoogle Scholar
  33. Wood, E.J.F. 1956. Fluorescence microscopy in marine microbiology. Jour, du Conseil 21: 6–7.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • Lisa Campbell
    • 1
  • Lynda P. Shapiro
    • 2
  • Elin M. Haugen
    • 2
  • Lisa Morris
    • 2
  1. 1.Hawaii Institute of GeophysicsUniversity of HawaiiHonoluluUSA
  2. 2.Bigelow Laboratory for Ocean SciencesWest Boothbay HarborUSA

Personalised recommendations