Growth and Respiration Characteristics of Candida albicans

  • S. Anand
  • R. Prasad

Abstract

The dimorphic fungus, Candida albicans, grows best under aerobic conditions, although it does exhibit a limited degree of anaerobic growth. Growth rates of C. albicans show substantial variations according to the strain and culture conditions used. Under optimal conditions it can achieve maximal doubling times of just under 1 h [29,99].

Keywords

Fermentation Proline Disulfide Pyrimidine Biotin 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aerts RJ, Durston AJ, Konijn TM (1987) Cytoplasmic pH at the onset of development in Dictyostelium. J Cell Science 87: 423PubMedGoogle Scholar
  2. 2.
    Alvarez A, McKinnon JE (1957) “Lethal” variant of Candida albicans, a “petite colonie” mutant. Science 126:399PubMedCrossRefGoogle Scholar
  3. 3.
    Aly R, Maibach H (1983) Susceptibility to skin infection. In: Rook AJ, Maibach H (eds) Recent advances in dermatology, no 6. Churchill Livingstone, Edinburgh, p 75Google Scholar
  4. 4.
    Anderson JM, Soll DR (1984) Effects of zinc on stationary-phase phenotype and macromolecular synthesis accompanying outgrowth of Candida albicans. Infect Immun 46: 13PubMedGoogle Scholar
  5. 5.
    Aoki S, Ito-Kuwa S (1982) Respiration of Candida albicans in relation to its morphogenesis. Plant Cell Physiol 23: 721Google Scholar
  6. 6.
    Aoki S, Ito-Kuwa S (1984) The appearance and characterization of cyanide-resistant respiration in the fungus Candida albicans. Microbiol Immunol 28: 393PubMedGoogle Scholar
  7. 7.
    Aoki S, Ito-Kuwa S (1987) Induction of petite mutation with acriflavine and elevated temperatures in Candida albicans. J Med Vet Mycol 25: 269PubMedCrossRefGoogle Scholar
  8. 8.
    Balish E (1973) Methionine biosynthesis and S-adenosyl methionine degradation during an induced morphogenesis of Candida albicans. Can J Microbiol 19: 847PubMedCrossRefGoogle Scholar
  9. 9.
    Balish E (1973) S-adenosylmethionine metabolism by members of the genus Candida. Can J Microbiol 19: 1297PubMedCrossRefGoogle Scholar
  10. 10.
    Bartinicki-Garcia S, Lippman E (1968) Fungal morphogenesis-cell wall construction in Mucor rouxii. Science 165: 302CrossRefGoogle Scholar
  11. 11.
    Bedard DP, Singer RA, Johnston GC (1986) Transient cell cycle arrest of the yeast Saccharomyces cerevisiae by the amino acid analog beta-2-DL-thienylalanine. J Bacteriol 141: 100Google Scholar
  12. 12.
    Borgers M, DeNollin S, Thone F, Belle H Van (1977) Cytochemical localization of NADH oxidase in Candida albicans. J Histochem Cytochem 25: 193PubMedCrossRefGoogle Scholar
  13. 13.
    Borgess M, Bossche H van den (1982) The mode of action of antifungal drugs. In: Levine HB (ed) Ketoconazole in the management of fungal disease. ADIS, Australia, p 25Google Scholar
  14. 14.
    Brown WM, Prager EM, Wang A, Wilson AC (1982) Mitochondrial DNA sequences of primates: tempo and mode of evolution. J Mol Evol 18: 225PubMedCrossRefGoogle Scholar
  15. 15.
    Bulder CJEA (1964) Induction of petite mutation and inhibition of synthesis of respiratory enzymes in various yeasts. Anton Leeuwen 30: 1CrossRefGoogle Scholar
  16. 16.
    Bulder CJEA (1964) Lethality of the petite mutation in petite negative yeasts. Anton Leeuwen 30: 442CrossRefGoogle Scholar
  17. 17.
    Cassone A, Sullivan PA, Shepherd MG (1985) N-acetyl-D-glucosamine- induced morphogenesis in Candida albicans. Microbiologica 58: 85Google Scholar
  18. 18.
    Chaffin WL (1985) Effect of tunicamycin on germ tube and yeast bud formation in Candida albicans. Can J Microbiol 131: 1853Google Scholar
  19. 19.
    Chiew YY (1989) The dynamics of carbohydrate metabolism in Candida albicans. Exp Mycol 13: 49CrossRefGoogle Scholar
  20. 20.
    Chin CM, Shepherd MG, Sullivan PA (1975) Cyanide insensitive respiration in Candida albicans. Proc Univ Otago Med Sch 53: 42Google Scholar
  21. 21.
    Cutler JE, Hazen KC (1983) Yeast/mold morphogenesis. In: Bunnet JW, Cieger A (eds) Secondary metabolism and differentiation in fungi, vol 5. Dekker, New York, p 267Google Scholar
  22. 22.
    Dabrowa N, Howard DH (1983) Blastoconidium germination. In: Howard DH (ed) Fungi pathogenic for humans and animals. Dekker, New York, p 525Google Scholar
  23. 23.
    Davison MT, Garland PB (1977) Structure of mitochondria and vacuoles of Candida utilis and Schizosaccharomyces pombe studied by electron microscopy of aerial thin sections and model building. J Gen Microbiol 98: 147PubMedGoogle Scholar
  24. 24.
    Downie JA, Garland PB (1973) An antimycin A and cyanide-resistant variant of Candida utilis arising during copper-limited growth. Biochem J 134: 1051PubMedGoogle Scholar
  25. 25.
    Dudani AK, Prasad R (1985) Differences in amino acid transport and phospholipid contents during the cell cycle of Candida albicans. Folia Microbiol 30: 493CrossRefGoogle Scholar
  26. 26.
    Edwards DL, Rosenberg E (1976) Regulation of cyanide-insensitive respiration in Neurospora crassa. Eur J Biochem 62: 217PubMedCrossRefGoogle Scholar
  27. 27.
    Edwards DL, Rosenberg E, Maroney PA (1974) Induction of cyanide insensitive respiration in N. crassa. J Biol Chem 249: 3351Google Scholar
  28. 28.
    Eklund T, Jarmud T (1983) Microculture model studies on the effect of various gas atmospheres on microbial growth at different temperatures. J Appl Bacteriol 55: 119PubMedCrossRefGoogle Scholar
  29. 29.
    Evans EGV, Odds FC, Richardson MD, Holland KT (1974) The effect of growth medium on filament production in Candida albicans. Sabouraudia 12: 112PubMedCrossRefGoogle Scholar
  30. 30.
    Fiechter A, Fuhrman GF, Kapell O (1981) Regulation of glucose metabolism in growing yeast cells. Adv Microbial Physiol 22: 123CrossRefGoogle Scholar
  31. 31.
    Frame G W, Strauss WG, Maibach HI (1972) Carbon dioxide and emission of the human arm and hand. J Invest Dermatol 59: 155PubMedCrossRefGoogle Scholar
  32. 32.
    Funato A (1979) Electron microscope studies on Candida tropicalis in synchronous culture with special reference to three-dimensional structure of its mitochondrion. J Tokyo Med Coll 37: 693Google Scholar
  33. 33.
    Gow NAR, Gooday GW (1982) Growth kinetics and morphology of colonies of the filamentous form of Candida albicans. J Gen Microbiol 128: 2187PubMedGoogle Scholar
  34. 34.
    Gow NAR, Gooday GW (1987) Cytological aspects of dimorphism in Candida albicans. CRC Crit Rev Microbiol 15: 73CrossRefGoogle Scholar
  35. 35.
    Gow NAR, Henderson G, Gooday GW (1986) Cytological relationships between the cell cycle and duplication cycle of Candida albicans. Microbios 47: 97PubMedGoogle Scholar
  36. 36.
    Grappel SF, Calderone RA (1976) Effect of antibodies on the respiration and morphology of Candida albicans. Sabouraudia 14: 51PubMedCrossRefGoogle Scholar
  37. 37.
    Guerin M, Camougrand N (1986) The alternate oxidase of Candida parapsilosis. Eur J Biochem 159: 519PubMedCrossRefGoogle Scholar
  38. 38.
    Hasilik A, Livar M (1972) The effect of 4-bromobenzyl isothiocyanate on the redox state of nicotinamide-adenine dinucleotides in Candida albicans. Chem Biol Interact 4: 305PubMedCrossRefGoogle Scholar
  39. 39.
    Hauswirth WW, Laipis PJ (1982) Mitochondrial DNA polymorphism in a maternal lineage of Holstein cows. Proc Natl Acad Sei USA 79: 4686CrossRefGoogle Scholar
  40. 40.
    Henry MF, Hamaide-Deplus MC, Nyns EJ (1974) Cyanide-insensitive respiration of Candida albicans. Anton Leeuwen 40: 79CrossRefGoogle Scholar
  41. 41.
    Henry MF, Bonner WD, Nyns EJ Jr (1977) Involvement of iron in the biogenesis of the cyanide-insensitive respiration in the yeast Saccharomycopsis lipolytica. Biochim Biophys Acta 460: 94PubMedCrossRefGoogle Scholar
  42. 42.
    Holmes AR, Shepherd MG (1987) Proline induced germ-tube formation in Candida albicans’. role of prolice uptake and nitrogen metabolism. J Gen Microbiol 133: 3219PubMedGoogle Scholar
  43. 43.
    Holmes AR, Shepherd MG (1988) Nutritional factors determine germ tube formation in Candida albicans. J Med Vet Mycol 26: 127PubMedCrossRefGoogle Scholar
  44. 44.
    Iralu V (1971) Formation of aerial hyphae in Candida albicans. Appl Microbiol 22: 482PubMedGoogle Scholar
  45. 45.
    Ito-Kuwa S, Aoki S, Watanabe T, Ehara T, Osafune T (1988) Fluorescence microscopic studies on mitochondria and mitochondrial nucleoids in a wild-type strain and respiratory mutants of Candida albicans. J Med Vet Mycol 26: 207PubMedCrossRefGoogle Scholar
  46. 46.
    Jayakumar A, Singh M, Prasad R (1978) Characteristics of proline transport in normal and starved cells of Candida albicans. Biochim Biophys Acta 514: 348PubMedCrossRefGoogle Scholar
  47. 47.
    Johnston GC, Singer RA (1978) RNA synthesis and control of cell division in the yeast Saccharomyces cerevisiae. Cell 14: 951PubMedCrossRefGoogle Scholar
  48. 48.
    Kennedy MJ (1981) Inhibition of Candida albicans by the anaerobic oral flora of mice in vitro. Sabouraudia 19: 205PubMedCrossRefGoogle Scholar
  49. 49.
    Kockova-Kratochvilova A, Stuchlik V, Pokorna M (1964) The genus Candida Berkhout. V. Basic nutrition of Candida albicans in static culture. Folia Microbiol 9: 361Google Scholar
  50. 50.
    Kot EJ, Rolewic LJ, Olson VC, McClary DO (1975) Growth, respiration and cytology of acetate-negative mutants of Candida albicans. Anton Leeuwen 41: 229CrossRefGoogle Scholar
  51. 51.
    Kot EJ, Olson VL, Rolewic LJ, McClary DO (1976) An alternate respiratory pathway in Candida albicans. Anton Leeuwen 42: 33CrossRefGoogle Scholar
  52. 52.
    Lambowitz AW, Slayman CW (1971) Cyanide resistant respiration in Neurospora crassa. J Bacteriol 108: 1087PubMedGoogle Scholar
  53. 53.
    Land GA, McDonald WC, Stjernholm RL, Friedman L (1975) Factors affecting filamentation in Candida albicans. Relationship of the uptake and distribution of proline to morphogenesis in Candida albicans. Infect Immun 11: 1014Google Scholar
  54. 54.
    Land GA, McDonald WC, Stjernholm RL, Friedman L (1975) Factors affecting filamentation in Candida albicans: changes in respiratory activity of Candida albicansdm’mg fermentation. Infect Immun 12: 119PubMedGoogle Scholar
  55. 55.
    Laties GG (1982) The cyanide resistant, alternative respiratory path in higher plant respiration. Annu Rev Plant Physiol 33: 519CrossRefGoogle Scholar
  56. 56.
    Lee KL, Buckley HR, Campbell CC (1975) An amino acid liquid synthetic medium for the development of mycelial and yeast forms of Candida albicans. Sabouraudia 13: 148PubMedCrossRefGoogle Scholar
  57. 57.
    Littman ML, Miwatani T (1963) Effect of water soluble vitamins and their analogues on the growth of Candida albicans. I. Biotin, pyridoxamine, pyridoxine and fluorinated pyrimidines. Mycopathol Mycol Appl 21: 81PubMedCrossRefGoogle Scholar
  58. 58.
    Littman ML, Miwatani T (1963) Effect of water soluble vitamins and their analogues on growth of Candida albicans. II. Vitamin B, substituted pyrimidines and thiazoles. Mycopathol Mycol Appl 21: 298Google Scholar
  59. 59.
    Littman ML, Miwatani T (1964) Effect on water soluble vitamins and their analogues on growth of Candida albicans. III. Para-amino-benzoic acid, nicotinic acid, inositol and their analogues. Mycopathol Mycol Appl 22: 117Google Scholar
  60. 60.
    Loomis WF (1982) The development of Dictyostelium discoedium. Acacemic Press, LondonGoogle Scholar
  61. 61.
    Makinen KK, Ojanotko A, Vidgren H (1975) Effect of xylitol on the growth of three oral strains of Candida albicans. J Dent Res 54: 1239PubMedCrossRefGoogle Scholar
  62. 62.
    Mardon D, Balish E, Philliphs AW (1969) Control of dimorphism in a biochemical variant of Candida albicans. J Bacteriol 100: 701PubMedGoogle Scholar
  63. 63.
    Maresca B, Lambowitz AL, Kobayashi GS, Medoff GL (1979) Respiration in the yeast and mycelial phases of Histoplasma capsulatum. J Bacteriol 138: 647PubMedGoogle Scholar
  64. 64.
    Maresca B, Kumar BV, Medoff J, Medoff G, Kobayashi GS (1980) Studies on dimorphism in H. capsulatum. Biochemical changes during the differentiation process. In: Dreusser HJ (ed) Medical mycology. Fisher, New York, p 17Google Scholar
  65. 65.
    McClary DO (1952) Factors affecting the morphology of Candida albicans. Ann Mo Bot Gard 39: 137CrossRefGoogle Scholar
  66. 66.
    McDonald SA, Durston AJ (1984) The cell cycle and sorting behaviour in Dictyostelium discoeidium. J Cell Sei 66: 195Google Scholar
  67. 67.
    McFeeters GA, Wilson DF, Strobel GA (1970) Cytochromes in a cyanide resistant strain of Bacillus cereus. Can J Microbiol 16: 1221CrossRefGoogle Scholar
  68. 68.
    Miller SE, Finnerty WR (1979) Age related physiological studies comparing Candida albicans chlamydospores to yeasts. Can J Microbiol 25: 765PubMedCrossRefGoogle Scholar
  69. 69.
    Miller SE, Spurlock BO, Michaelis GE (1974) Electron microscopy of young Candida albicans chlamydospores. J Bacteriol 119: 992PubMedGoogle Scholar
  70. 70.
    Mizuno N, Montes LF (1966) Oxidative enzyme activity in Candida albicans. Sabouraudia 5: 46PubMedCrossRefGoogle Scholar
  71. 71.
    Mounolou JC, Jakob H, Slonimski PP(1986) Mitochondrial DNA from yeast “petite” mutants: specific changes of bouyant density corresponding to different cytoplasmic mutations. Biochem Biophys Res Commun 12: 448Google Scholar
  72. 72.
    Nagai S (1963) Diagnostic color differentiation plates for hereditary respiration deficiency in yeast. J Bacteriol 86: 299PubMedGoogle Scholar
  73. 73.
    Nickersen WJ (1963) Symposium on biochemical basis of morphogenesis in fungi. Bacteriol Rev 27: 305Google Scholar
  74. 74.
    Nickersen W J, Falcone G (1956) Identification of protein disulfide reductase as a cellular division enzyme in yeasts. Science 124: 722CrossRefGoogle Scholar
  75. 75.
    Nickersen WJ, Van Rij NJW (1949) The effect of sulfhydryl compounds, penicillin and cobalt on the cell division mechanism of yeasts. Biochim Biophys Acta 3: 461CrossRefGoogle Scholar
  76. 76.
    Niimi M, Tokunaga M, Nakayama H (1986) Regulation of mannitol catabolism in Candida albicans: evidence for cyclic-AMP dependent glucose effect. J Med Vet Mycol 24: 211PubMedCrossRefGoogle Scholar
  77. 77.
    Niimi M, Kamiyama A, Tokunaga M, Nakayama H (1987) Evidence for glucose effect on N-acetyl glucosamine catabolism in Candida albicans. Can J Microbiol 33: 345PubMedCrossRefGoogle Scholar
  78. 78.
    Niimi M, Kamiyama A, Tokunaga M (1988) Respiration of medically important Candida species and Saccharomyces cerevisiae in relation to glucose effect. J Med Vet Mycol 26: 195PubMedCrossRefGoogle Scholar
  79. 79.
    Odds FC (1985) Morphogenesis in Candida albicans. CRC Crit Rev Microbiol 12: 45CrossRefGoogle Scholar
  80. 80.
    Odds FC (1988) Candida and candidosis, 2nd edn. Balliere Tindall, LondonGoogle Scholar
  81. 81.
    Odds FC, Abbott AB (1980) A simple system for the presumptive identification of Candida albicans and differentiation of strains within the species. Sabouraudia 18: 301PubMedCrossRefGoogle Scholar
  82. 82.
    Oivo PD, Memanus EJ, Riggsby WS, Jones JM (1987) Mitochondria DNA polymorphism in Candida albicans. J Infect Dis 156: 214CrossRefGoogle Scholar
  83. 83.
    Paris S, Duran-Gonzalez S, Mariat F (1985) Nutritional studies on Paracoccidiodies brasilensis: the role of organic sulphur in dimorphism. Sabouraudia 23: 85PubMedCrossRefGoogle Scholar
  84. 84.
    Persi MA, Burnham JC (1981) Use of tannic acid as a fixative mordant to improve the ultrastructural appearance of Candida albicans blastospores. Sabouraudia 19: 1PubMedCrossRefGoogle Scholar
  85. 85.
    Petrik M, Kappeli O, Fiechter A (1983) An expanded concept for the glucose effect in the yeast Saccharomyces uvarum: involvement of short- and long-term regulation. J Gen Microbiol 129: 43Google Scholar
  86. 86.
    Pitillo RF, Narkates AJ (1964) Folic acid inhibition of non-proliferating bacteria. Can J Microbiol 10: 345CrossRefGoogle Scholar
  87. 87.
    Pollack JH, Hashimoto T (1985) Ethanol induced germ tube formation in Candida albicans. J Gen Microbiol 131: 3303PubMedGoogle Scholar
  88. 88.
    Portillo F, Gancedo C (1984) Mode of action of miconazole on yeasts: inhibition of mito¬chondrial ATPase. Eur J Biochem 143: 273PubMedCrossRefGoogle Scholar
  89. 89.
    Restrepo A, Salzar ME, Cano LE, Stover EP, Feldman D, Stevens DA (1984) Estrogens inhibit mycelium to yeast transformation in the fungus Paracoccidiodies brasilensis’. implications for resistance of females to paracoccidioidomycosis. Infect Immun 47: 346Google Scholar
  90. 90.
    Ruiz-Herrera J (1985) Dimorphism in Mucor species with emphasis on M. rouxii and M. bacilliformis. In: Szaniszlo PJ (ed) Fungal dimorphism. Plenum, London, p 361Google Scholar
  91. 91.
    Rustin P, Dupont J, Lance C (1983) A role for fatty acid peroxy radicals in the cyanide-in- sensitive pathway of plant mitochondria? Tr Biochem Sei 8: 155CrossRefGoogle Scholar
  92. 92.
    Rustin P, Dupont J, Lance C (1983) Oxidative interactions between fatty acid peroxy radicals and quinones: possible involvement in cyanide-resistant electron transport in plant mito¬chondria. Arch Biochem Biophys 225: 630PubMedCrossRefGoogle Scholar
  93. 93.
    Rustin P, Dupont J, Lance C (1984) Involvement of lipid peroxy radicals in the cyanide-resistant electron transport pathway. Physiol Veg 22: 643Google Scholar
  94. 94.
    Samarnayake LP, Geddes D, Weetman D, Macfarlane TW (1983) Growth and acid production of Candida albicans in carbohydrate supplemented media. Microbios 37: 105Google Scholar
  95. 95.
    San Blas F, San Blas G, Inglow D (1980) Dimorphism in Paracoccidiodies brasilensis. In: Preusser HJ (ed) Medical mycology. Fisher, New York, p 23Google Scholar
  96. 96.
    Schwarz J (1971) The pathogenesis of Histoplasmosis. In: Ajello L, Chick EW, Furcolow ML (eds) Histoplasmosis proceedings. Thomas, Springfield, 111, p 244Google Scholar
  97. 97.
    Shah DM, Langley CH (1979) Inter- and intra-specific variations in restriction maps of Drosophila mitochondrial DNAs. Nature 281: 696PubMedCrossRefGoogle Scholar
  98. 98.
    Shepherd MG (1988) Morphogenetic transformation in fungi. Curr Topics Med Mycol 2: 278CrossRefGoogle Scholar
  99. 99.
    Shepherd MG, Sullivan PA (1976) The production and growth characteristics of yeast and mycelial forms of Candida albicans in continuous cultures. J Gen Microbiol 93: 361PubMedGoogle Scholar
  100. 100.
    Shepherd MG, Chin CM, Sullivan PA (1978) The alternate respiratory pathway of Candida albicans. Arch Microbiol 116: 61PubMedCrossRefGoogle Scholar
  101. 101.
    Shepherd MG, Poulter RTM, Sullivan PA (1985) Candida albicans’, biology, genetics and pathogenecity. Annu Rev Microbiol 39: 579PubMedCrossRefGoogle Scholar
  102. 102.
    Shigematsu ML, Uno J, Arai T (1982) Effect of ketoconazole on isolated mitochondria from Candida albicans. Antimicrob Agents Chemother 21: 919PubMedGoogle Scholar
  103. 103.
    Singer RA, Johnston GC, Bedard D (1978) Methionine analogs and cell division regulation in the yeast, Saccharomyces cerevisiae. Proc Natl Acad Sei USA 75: 6083Google Scholar
  104. 104.
    Singh B, Gupta KC (1972) Effect of growth-regulating substances on the biomass and lipids of some fungi. Zentralbl Bakteriol (A) 220: 554Google Scholar
  105. 105.
    Singh M, Jayakumar A, Prasad R (1978) The effect of altered lipid composition on the transport of various amino acids in Candida albicans. Arch Biochem Biophys 191: 680PubMedCrossRefGoogle Scholar
  106. 106.
    Singh M, Jayakumar A, Prasad R (1979) Lipid composition and polyene antibiotic sensitivity in isolates of Candida albicans. Microbios 24: 7PubMedGoogle Scholar
  107. 107.
    Sims W (1986) Effects of carbon dioxide on the growth and form of Candida albicans. J Med Microbiol 22: 203PubMedCrossRefGoogle Scholar
  108. 108.
    Soll DR (1984) The cell cycle and commitment to alternate cell fates in Candida albicans. In: Nurse P, Streiblova E (eds) The microbial cell cycle. CRC, Boca Raton, p 143Google Scholar
  109. 109.
    Soli DR (1986) The regulation of cellular differentiation in the dimorphic yeast Candida albicans. Bioessays 5: 5CrossRefGoogle Scholar
  110. 110.
    Soll DR, Bedell GW, Brummell M (1981) Zinc and the regulation of growth and phenotype in the infectious yeast Candida albicans. Infect Immun 32: 1139PubMedGoogle Scholar
  111. 111.
    Staebell M, Soli DR (1985) Temporal and spatial differences in cell wall expansion during bud and mycelium formation in Candida albicans. J Gen Microbiol 131: 1467PubMedGoogle Scholar
  112. 112.
    Stevens B (1981) Mitochondrial structure. In: Strathern JN, Jones EW, Broach JR (eds) The molecular biology of the yeast Saccharomycescerevisiae. Life cycle and inheritance. Cold Spring Harbor Laboratory, New York, p 471Google Scholar
  113. 113.
    Szaniszlo PJ, Jacobs CW, Gels PA (1983) Dimorphism: morphological and biochemical aspects. In: Howard DH (ed) Fungi pathogenic for humans and animals, part A. Dekker, New York, p 323Google Scholar
  114. 114.
    Tanaka K, Kanbe T, Kuroiwa T (1985) Three dimensional behaviour of mitochondria during cell division and germ tube formation in the dimorphic yeast Candida albicans. J Cell Sei 73: 207Google Scholar
  115. 115.
    Taylor JW, Wells K (1979) The mitochondrion in mitotic and starved cells of Bullera alba. Exp Mycol 3: 16CrossRefGoogle Scholar
  116. 116.
    Teranishi Y, Shimizu S, Tanaka A, Fukui S (1974) Comparative studies on respiratory activity and cytochrome content of Candida tropicalis pK 233 grown on hydrocarbon and on glucose. Agric Biol Chem 28: 1581CrossRefGoogle Scholar
  117. 117.
    Vanderleyden J, Kurth J, Verchtert H (1979) Characterization of cyanide insensitive respiration in mitochondria and submitchondrial particles of Moniliella tomentosa. Biochem J 182: 437PubMedGoogle Scholar
  118. 118.
    van Urk H, Mak PR, Scheffers WA, Van Dijken JP (1988) Metabolic responses of Saccha- romyces cerevisiae CBS 8066 and Candida utilis CBS 621 upon transition from glucose limitation to glucose excess. Yeast 4: 283PubMedCrossRefGoogle Scholar
  119. 119.
    Ward JM, Nickersen WJ (1958) Respiratory metabolism of normal and divisionless strains of Candida albicans. J Gen Physiol 41: 703PubMedCrossRefGoogle Scholar
  120. 120.
    Watkins PD, Brandt PM, McClary DO (1974) Selection and characterization of acriflavine induced mutants of Candida albicans. Anton Leeuwen 40: 153CrossRefGoogle Scholar
  121. 121.
    Webster CE, Odds FC (1987) Growth of pathogenic Candida isolates anaerobically and under elevated concentrations of C02 in air. J Med Vet Mycol 25: 47PubMedCrossRefGoogle Scholar
  122. 122.
    Williamson DH, Finnell DJ (1975) The use of fluorescent DNA — binding agent for detecting and separating yeast mitochondrial DNA. Methods Cell Biol 12: 335PubMedCrossRefGoogle Scholar
  123. 123.
    Wills JW, Troutman WB, Riggsby WS (1985) Circular mitochondrial genome of Candida albicans contains a large inverted duplication. J Bacteriol 164: 7PubMedGoogle Scholar
  124. 124.
    Yamaguchi H (1974) Dimorphism in Candida albicans. I. Morphology-dependent changes in cellular content of macromolecules and respiratory activity. J Gen Appl Microbiol 20: 87CrossRefGoogle Scholar
  125. 125.
    Yamaguchi H, Kanda Y, Iwata K (1971) Biochemical properties of mitochondria from Candida albicans. Sabouraudia 9: 221PubMedCrossRefGoogle Scholar
  126. 126.
    Yamaguchi H, Kanda Y, Osumi M (1974) Dimorphism in Candida albicans. II. Comparison of fine structure of yeast-like and filamentous phase growth. J Gen Appl Microbiol 20: 101CrossRefGoogle Scholar
  127. 127.
    Yamaguchi H, Hiiatani T, Osumi M, Iwata K (1982) Isolation and characterization of mutants, especially respiratory deficient mutants, of Candida albicans. Jpn J Med Mycol 23: 132CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • S. Anand
    • 1
  • R. Prasad
    • 1
  1. 1.School of Life SciencesJawaharlal Nehru UniversityNew DelhiIndia

Personalised recommendations