Advertisement

Effects of Rubella Virus Infection on Islet Function

Conference paper
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 156)

Abstract

Viruses have been linked to the subsequent development of diabetes mellitus for at least 90 years (HARRIS 1899). The evidence to support environmental factors comes from a variety of studies including case reports in the literature, especially in regard to the congenital rubella syndrome (GINSBERG-FELLNER et al. 1985). The association of diabetes mellitus with the congenital rubella syndrome (CRS) provides the most compelling data that viruses may be directly accountable for the later onset of diabetes (RAYFIELD and ISHIMURA 1987). This chapter will first review data from human studies and then present evidence from animal models to support an association of CRS with diabetes mellitus. This is a logical sequence since it was the observations from the human studies which prompted the development of the animal models.

Keywords

Rubella Virus Golden Syrian Hamster Islet Function Hamster Model Congenital Rubella Syndrome 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allison AC (1977) Mechanisms by which autoimmunity can be produced. In: Mendel TE, Cheer SC, Hoskins CS, McKenzie IFC, Nossal H (eds) Progress in immunology, vol III. Elsevier, North Holland, New York, p 152Google Scholar
  2. Avila L, Rawls WE, Dent PB (1973) Experimental infection with rubella virus: I. acquired and congenital infection in rats. J Infect Dis 126: 585–592CrossRefGoogle Scholar
  3. Bottazzo GF, Florin-Christensen A, Doniach D (1974) Islet-cell antibodies in diabetes mellitus with autoimmune polyendocrine deficiencies. Lancet 2: 1279–1282PubMedCrossRefGoogle Scholar
  4. Cooper LZ (1985) The history of medical consequences of rubella. Rev Infect Dis 7[Suppl]: S2-S10PubMedCrossRefGoogle Scholar
  5. Cotlier E, Fox J, Bohigian G, Beaty C, Dupree A (1968) Pathogenic effects of rubella virus Oil embryos and newborn rats. Nature 217: 38–40PubMedCrossRefGoogle Scholar
  6. Delahunt CS, Rieser N (1967) Rubella-induced embryopathies in monkeys. Am J Obstet Gynecol 99: 580–588PubMedGoogle Scholar
  7. Fauci AC (1980) Immunoregulation of autoimmunity. J Allergy Clin Immunol 66: 5–17PubMedCrossRefGoogle Scholar
  8. Forrest JM, Menser MA, Harley JD (1969) Diabetes mellitus and congenital rubella. Pediat 44: 445–447Google Scholar
  9. Forrest JM, Menser MA, Burgess JA (1971) High frequency of diabetes mellitus in young adults with congenital rubella. Lancet 2: 332–334PubMedCrossRefGoogle Scholar
  10. Ginsberg-Fellner F, Witt ME, Yagihashi S, Dobersen MJ, Taub F, Fedun B, Mvoy RC, Roman SH, Davies TF, Cooper LZ, Rubinstein P, Notkins AL (1984) Congenital rubella-syndrome as a model for type 1 (insulin-dependent) diabetes mellitus: increased prevalance of islet cell surface antibodies. Diabetologia 27: 87–89PubMedCrossRefGoogle Scholar
  11. Ginsberg-Fellner F, Witt ME, Fedun B, Taub F, Dobersen MJ, Mvoy RC, Cooper LZ, Notkins AL, Rubinstein P (1985) Diabetes mellitus and autoimmunity in patients with congenital rubella syndrome. Rev Infect Dis 7 [Suppl 1]: S170-S175PubMedCrossRefGoogle Scholar
  12. Ginsberg-Fellner F, Fedun B, Cooper Z, Witt ME, Franklin BH, Roman SH, Rubinstein P, Mvoy RC (1987) Interrelationships of congenital rubella and type 1 insulin-dependent diabetes mellitus. In: Jaworski MA, Molnar GD, Rajotte RV, Singh B (eds) The immunology of diabetes mellitus. Elsevier, Amsterdam, pp 279–286Google Scholar
  13. Harris HF (1899) A case of diabetes mellitus quickly following mumps. Boston Med Surg J 140: 465–469CrossRefGoogle Scholar
  14. Hay DR (1949) The relation of maternal rubella to congenital deafness and other abnormalities in New Zealand. NZ Med J 48: 604–608Google Scholar
  15. Juan C, Avruskin TW (1971) Combined immunoassay of human growth hormone and insulin: cumulative assessment of assay performace. J Clin Endocrinol Metab 33: 150–152PubMedCrossRefGoogle Scholar
  16. Kono R, Hayakawa Y, Hibi M, Ishii K (1969) Experimental vertical transmission of rubella virus in rabbits. Lancet 1: 343–347PubMedCrossRefGoogle Scholar
  17. Kono R, Hirayama M, Sugishita C, Miyamura K (1985) Epidemiology of rubella and congenital rubella infection in Japan. Rev Infect Dis 7 [Suppl 1]: 556–563Google Scholar
  18. Mvoy RC, Witt ME, Ginsberg-Fellner F, Rubinstein P (1986) Antiinsulin antibodies in children with type 1 diabetes mellitus: genetic regulation of production and presence at diagnosis before insulin replacement. Diabetes 35: 634–641CrossRefGoogle Scholar
  19. Menser MA, Dods L, Harley JD (1967) A twenty-five year follow-up of congenital rubella. Lancet 2: 1347–1350PubMedCrossRefGoogle Scholar
  20. Menser MA, Forrest JM, Honeyman MC, Burgess JA (1974) Diabetes, HLA-antigens, and congenital rubella. Lancet 2: 1508–1509PubMedCrossRefGoogle Scholar
  21. Menser MA, Forrest JM, Bransky RO (1978) Rubella infection and diabetes mellitus. Lancet 1: 57–60PubMedCrossRefGoogle Scholar
  22. Monif GRG, Avery GB, Korones SB, Sever JL (1965) Postmortem isolation of rubella virus from three children with rubella syndrome defects. Lancet 1: 723–724PubMedCrossRefGoogle Scholar
  23. Oldstone MBA, Sinha YN, Blount P, Tishon A, Rodriguez M, von Wedal R, Lampert PW (1982) Virus-induced alterations in homeostasis: alterations in differentiated functions of infected cells in vivo. Science 218: 1125–1127PubMedCrossRefGoogle Scholar
  24. Onodera T, Toniolo A, Ray UR, Jenson 4AB, Knazek RA, Notkins AL (1981) Virus-induced diabetes mellitus. XX Polyendocrinopathy and autoimmunity. J Exp Med 153: 1457–1473PubMedCrossRefGoogle Scholar
  25. Oxford JS (1967) The growth of rubella virus in small laboratory animals. J Immunol 98: 697–701PubMedGoogle Scholar
  26. Parkman PD, Phillips PE, Krichstein RL, Meyer HM Jr (1965) Experimental rubella in the rhesus monkey. J Immunol 95: 743–752PubMedGoogle Scholar
  27. Preece MA, Kearney PJ, Marshall WC (1977) Growth-hormone deficiency in congenital rubella. Lancet 2: 842–844PubMedCrossRefGoogle Scholar
  28. Rabinowe SL, George KL, Loughlin R, Soeldner JS, Eisenbarth GS (1986) Congenital rubella: monoclonal antibody-defined T cell abnormalities in young adults. Am J Med 81: 779–782PubMedCrossRefGoogle Scholar
  29. Rayfield EJ, Ishimura K (1987) Environmental factors and insulin-dependent diabetes mellitus. Diabetes Metab Rev 3(4): 925–957PubMedCrossRefGoogle Scholar
  30. Rayfield EJ, Kelly KJ (1985) A direct mechanism by which rubella virus impairs insulin secretion. Diabetes 34 [Suppl 1]: 68A (Abstract 271)Google Scholar
  31. Rayfield EJ, Yoon JW (1981) Role of viruses in diabetes. In: Biochemistry, physiology, and pathology of the islets of Langerhans. Academic, New York, pp 427–451Google Scholar
  32. Rayfield EJ, Kelly KJ, Yoon JW (1986) Rubella virus-induced diabetes in the hamster. Diabetes 35: 1278–1281PubMedCrossRefGoogle Scholar
  33. Reinherz EL, Schlossman SF (1980) Regulation of the immune response inducer and suppressor T-lymphocyte subsets in human beings. N Engl J Med 303: 370–373PubMedCrossRefGoogle Scholar
  34. Rewers M, Lorte RE, Walczak M, Dmochowski K, Bogaczynska E (1987) Apparent epidemic of insulin-dependent diabetes mellitus in mid western Poland 36: 106–113Google Scholar
  35. Rubinstein P, Walker ME, Fedun B, Witt ME, Cooper LZ, Ginsberg-Fellner F (1982) The HLA system is congenital rubella patients with and without diabetes. Diabetes 31: 1088–1091PubMedCrossRefGoogle Scholar
  36. Schlesinger MJ, Kaarianen L (1980) Translation and processing of alpha virus proteins. In: Schlesinger RW (ed) Toga viruses. Academic, New York, pp 371–389Google Scholar
  37. Schopfer K, Matter L, Flueler U, Wender E (1982) Diabetes mellitus, endocrine autoantibodies and prenatal rubella infection. Lancet 2: 159PubMedCrossRefGoogle Scholar
  38. Singer DB, Rudolf AJ, Rosenberg HS, Rawls WE, Boniu K (1967) Pathology of the congenital rubella syndrome. J Pediatr 71: 665–675PubMedCrossRefGoogle Scholar
  39. Unterwood LE, Van Wyk J J (1981) Hormones in normal and aberrant growth. In: Williams RH (ed) Textbook of endocrinology, 6th edn. Saunders, Philadelphia, pp 1147–1184Google Scholar
  40. Vaheria A, Sedurch WD, Plotkin SA (1967) Growth of rubella virus in BHK-21 cells. 1. Production, assay, and adaptation of virus. Proc Soc Exp Biol Med 125: 1086–1102Google Scholar
  41. Yoon JW, Bachurski CJ, Shin SK, Archer J (1984a) Isolation, cultivation, and characterization of murine pancreatic beta cells in microculture systems. In: Phol SL, Larner J (eds) Methods in diabetes, vol 3. Wiley, New York, pp 173–184Google Scholar
  42. Yoon JW, Shin SY, Bachurski CJ (1984b) Hybridomas from lymphocytes of normal mice produce monoclonal autoantibodies. Lancet 2: 641PubMedCrossRefGoogle Scholar
  43. Yoon JW, Mlintock PR, Bacharski CJ, Longstreth JD, Notkins AL (1985) Virus-induced diabetes mellitus: no evidence for immune mechanisms in the destruction of β cells by the β-variant of encephalomyocarditis virus. Diabetes 34: 922–925PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1990

Authors and Affiliations

  1. 1.Laboratory of Medical BiochemistryRockefeller UniversityNew YorkUSA

Personalised recommendations