Skip to main content

Streptozotocin Interactions with Pancreatic β Cells and the Induction of Insulin-Dependent Diabetes

  • Conference paper

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 156))

Abstract

The single most consistent finding in insulin-dependent diabetes mellitus (IDDM) is a substantial reduction in insulin secreting β cells (GEPTS 1965). The pathogenic factors responsible for this cellular destruction are complex and most likely differ among different subgroups in this category. Although these factors have not yet been definitively elucidated, it has become apparent that genetic influences and both humoral and cell mediated immunological phenomena are involved (EISENBARTH 1986; LEFEBVRE 1988). Also, a role for environmental factors in the etiology of IDDM has recently been indicated by epidemiological studies which have demonstrated that there is a marked increase in newly diagnosed cases of IDDM, which can only be explained by changes in environmental influences such as chemicals and viruses (KROWLEWSKI et al. 1987). Direct evidence that an ingested chemical can cause IDDM in humans comes from case reports of individuals who ate the rat poison Vacor in suicide attempts. Many of these individuals developed ketosis prone diabetes mellitus (KARAM et al. 1980; PROSSER and KARAM 1978). Studies in laboratory animals have provided additional evidence that xenobiotics can cause a critical reduction in insulin secreting cells. It is well established that nitrosamides like streptozotocin (SZ) and chlorozotocin and other complex amines like alloxan cause severe diabetes in laboratory animals (DULIN and SORET 1977; COOPERSTEIN and WATKINS 1981; MOSSMAN et al. 1985).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ames BN (1983) Dietary carcinogens and anticarcinogens: oxygen radicals and degenerative diseases. Science 221: 1256–1264

    Article  PubMed  CAS  Google Scholar 

  • Andersson A (1979) Islet implantation normalizes hyperglycemia caused by streptozotocin-induced insulitis. Lancet 1: 581–584

    Article  PubMed  CAS  Google Scholar 

  • Andersson A, Borg H, Hallberg A, Hellerstrom C, Sandler S, Schnell A (1984) Long-term effects of cyclosporin A on cultured mouse pancreatic islets. Diabetologia 27: 66–69

    Article  PubMed  CAS  Google Scholar 

  • Appel MC, Rossini A A, Williams RM, Like A A (1978) Viral studies in streptozotocin-induced pancreatic insulitis. Diabetologia 15: 327–336

    Article  PubMed  CAS  Google Scholar 

  • Babu PG, Huber SA, Craighead JE (1985) Immunology of viral diabetes. Surv Synth Pathol Res 4: 1–7

    PubMed  CAS  Google Scholar 

  • Beattie G, Lannom R, Lipsick J, Kaplan NO, Osier AG (1980) Streptozotocin-induced diabetes in athymic and conventional BALB/c mice. Diabetes 29: 146–150

    Article  PubMed  CAS  Google Scholar 

  • Bailey CJ, Ahmed-Sorour H (1980) Role of ovarian hormones in the long term control of glucose homeostasis. Effects on insulin secretion. Diabetologia 19: 475–481

    Article  PubMed  CAS  Google Scholar 

  • Beppu H, Maruta K, Kurner T, Kolb H (1987) Diabetogenic action of streptozotocin: essential role of membrane permeability. Acta Endocrinol 114: 90–95

    PubMed  CAS  Google Scholar 

  • Besedovsky HO, Del Rey A, Sorkin E, Lotz W, Schwulera U (1985) Lymphoid cells produce an immunoregulatory glucocorticoid increasing factor (GIF) acting through the pituitary gland. Clin Exp Immunol 59: 622–628

    PubMed  CAS  Google Scholar 

  • Besedovsky H, Del Rey A, Sorkin E, Dinarello A (1986) Immunoregulatory feedback between IL-1 and glucocorticoid hormones. Science 233: 652–654

    Article  PubMed  CAS  Google Scholar 

  • Blue ML, Shin SI (1984) Diabetes induction by subdiabetogenic doses of streptozotocin in BALB/OM mice. Noninvolvement of host B-lymphocyte functions. Diabetes 33: 105–110

    Article  PubMed  CAS  Google Scholar 

  • Bolaffi JL, Nowlan RE, Cruz L, Grodsky GM (1986) Progressive damage of cultured pancreatic islets after single early exposure to streptozotocin. Diabetes 35: 1027–1033

    Article  PubMed  CAS  Google Scholar 

  • Bolaffi JL, Nagamatsu S, Harris J, Grodsky GM (1987) Protection by thymidine, an inhibitor of polyadenosine diphosphate ribosylation, of streptozotocin inhibition of insulin secretion. Endocrinology 120:2117–2122

    Article  PubMed  CAS  Google Scholar 

  • Bonnevie-Nielsen V, Steifes MW, Lernmark A (1981) A major loss in islet mass and B-cell function precedes hyperglycemia in mice given multiple low doses of streptozotocin. Diabetes 30: 424–429

    Article  PubMed  CAS  Google Scholar 

  • Brosky G, Logothetopoulos J (1969) Streptozotocin diabetes in the mouse and guinea pig. Diabetes 18:606–613

    PubMed  CAS  Google Scholar 

  • Buschard K, Rygaard J (1977) Passive transfer of streptozotocin induced diabetes mellitus with spleen cells. Acta Pathol Microbiol Immunol Scand [C] 85: 469–472

    Google Scholar 

  • Buschard K, Rygaard J (1978) Is the diabetogenic effect of streptozotocin in part thymus-dependent? Acta Pathol Microbiol Immunol Scand [C] 86: 23–27

    CAS  Google Scholar 

  • Buschard K, Madsbad S, Rygaard J (1978) Passive transfer of diabetes mellitus from man to mouse. Lancet 2:908–910

    Article  Google Scholar 

  • Campbell IL, Wong GHW, Schräder JW, Harrison LC (1985) Interferon-gamma enhances the expression of the major histocompatibility class I antigens on mouse pancreatic ß cells. Diabetes 34:1205–1209

    Article  PubMed  CAS  Google Scholar 

  • Campbell IL, Oxbrow L, Koulmanda M, Harrison LC (1988) IFN-gamma induces islet cell MHC antigens and inhances autoimmune, streptozotocin-induced diabetes in the mouse. J Immunol 140:1111–1116

    PubMed  CAS  Google Scholar 

  • Ciaranello RD, Lipsky A, Axelrod J (1974) Association between fighting behavior and catecholamine biosynthetic enzyme activity in two inbred mouse sublines. Proc Natl Acad Sci USA 71:3006–3008

    Article  PubMed  CAS  Google Scholar 

  • Cooperstein SJ, Watkins D (1981) Action of toxic drugs on islets. In: Cooperstein SJ, Watkins D (eds) The islets of Langerhans. Academic, New York, pp 387–425

    Google Scholar 

  • Craighead JE (1978) Current views of insulin -dependent diabetes mellitus. N Engl J Med 299: 1439–1445

    Article  PubMed  CAS  Google Scholar 

  • Day RS, Ziolkowski CHJ, Scudiero DA, Meyer SA, Lubiniecki AS, Girardi AJ, Galloway SM, Bynum GD (1980) Defective repair of alkylated DNA by human tumour SV40 transformed human cell strains. Nature 288: 724–727

    Article  PubMed  CAS  Google Scholar 

  • Dayer-Metroz MD, Kimoto M, Izui S, Vassalli P, Renold AE (1988) Effect of helper and/or cytotoxic T-lymphocyte depletion on low-dose streptozotocin-induced diabetes in C57BL/6J mice. Diabetes 37: 1082–1089

    Article  PubMed  CAS  Google Scholar 

  • Defize J, Derodra JK, Riddell RH, Hunt RH (1988) Changes in rat and human pepsinogen phenotypes induced by N’-methyl-N’nitro-N-nitrosoguanidine. Cancer 62: 1958–1961

    Article  PubMed  CAS  Google Scholar 

  • Dolan ME, Oplinger M, Pegg AE (1988) Sequence specificity of guanine alkylation and repair. Carcinogenesis 9: 2139–2143

    Article  PubMed  CAS  Google Scholar 

  • Dulin WE, Soret MG (1977) Chemically and hormonally induced diabetes. In: Volk BW, Wellman KF (eds) The diabetic pancreas. Planum, New York, pp 425–466

    Google Scholar 

  • Eisenbarth GS (1986) Type I diabetes mellitus: a chronic autoimmune disease. N Engl J Med 314:1360–1368

    Article  PubMed  CAS  Google Scholar 

  • Eizirik Dl, Sandler S, Welsh N, Hellerstrom C (1988) Preferential reduction of insulin production in mouse pancreatic islets maintained in culture after streptozotocin exposure. Endocrinology 122:1242–1249

    Article  PubMed  CAS  Google Scholar 

  • Farr AG, Mannschreck JW, Anderson SK (1988) Expression of class II MHC antigens in murine pancreas after streptozotocin-induced insulitis. Diabetes 37: 1373–1379

    Article  PubMed  CAS  Google Scholar 

  • Flohr K, Kiesel U, Freytag G, Kolb H (1983) Insulitis as a consequence of immune dysregulation: further evidence. Clin Exp Immunol 53: 605–613

    PubMed  CAS  Google Scholar 

  • Foulis AK, Bottazzo GF (1988) Insulitis in the human pancreas. In: Lefebvre PJ, Pipeleers G (eds) The pathology of the endocrine pancreas in diabetes. Springer, Berlin Heidelberg New York, pp 41–52

    Chapter  Google Scholar 

  • Gepts W (1965) Pathological anatomy of the pancreas in juvenile diabetes mellitus. Diabetes 14:619–633

    PubMed  CAS  Google Scholar 

  • Goth-Goldstein R (1987) MNNG-induced partial phenotypic reversion of Mer- cells. Carcinogenesis 8: 1449–1453

    Article  PubMed  CAS  Google Scholar 

  • Gubbels E, Poort-Keesom R, Hilgers J (1985) Genetically contaminated BALB/c nude mice. Curr Top Microbiol Immunol 122: 86–88

    Article  PubMed  CAS  Google Scholar 

  • Hall J, Bresil H, Montesano R (1985) O6-Alkyguanine DNA alyltransferase activity in monkey, human and rat liver. Carcinogenesis 6: 209–211

    Google Scholar 

  • Haneda M, Chan SJ, Kwok SCM, Rubenstein AH, Steiner DF (1983) Studies on mutant human insulin genes: identification and sequence analysis of a gene encoding [Sers24] insulin. Proc Natl Acad Sci USA 80: 6366–6370

    Article  PubMed  CAS  Google Scholar 

  • Harbour DV, Blalock JE (1987) Leukocyte production of endorphins. In: Jankovic DB, Markovic BM, Spector NH (eds) Neuroendocrine interactions: proceedings of the second international workshop on neuroimmunomodulation. Ann NY Acad Sci 496: 192–195

    Google Scholar 

  • Hawksworth GM, Hill JJ (1974) The in vivo formation of N-nitrosamines in the rabbit bladder and their subsequent absorption. Br J Cancer 29: 353–358

    Article  PubMed  CAS  Google Scholar 

  • Haynes MK, Huber SA, Craighead JE (1987) Helper-inducer T-lymphocytes mediate diabetes in EMC-infected BALB/ mice. Diabetes 36: 877–881

    Article  PubMed  CAS  Google Scholar 

  • Hedler L, Marquardt P (1968) Occurrence of diethylnitrosamine in some samples of food. Food Cosmet Toxicol 6: 341–349

    Article  PubMed  CAS  Google Scholar 

  • Helgason T, Jonasson MR (1981) Evidence for a food additive as a cause of ketosis-prone diabetes. Lancet 2: 716–720

    Article  PubMed  CAS  Google Scholar 

  • Helgason T, Even SWB, Ross IS, Stowers JM (1982) Diabetes produced in mice by smoked cured mutton. Lancet 2: 1017–1021

    Article  PubMed  CAS  Google Scholar 

  • Herold KC, Montag AG, Fitch FW (1987) Treatment with anti-T-lymphocyte antibodies prevents induction of insulitis in mice given multiple doses of streptozotocin. Diabetes 36: 796–801

    Article  PubMed  CAS  Google Scholar 

  • Hill MR, Stith ED, Mallum RE (1986) Interleukin 1: a regulatory role in glucocorticoid-regulated hepatic metabolism. J Immunol 137: 858–862

    PubMed  CAS  Google Scholar 

  • Huang SW, Taylor GE (1981) Immune insulitis and antibodies to nucleic acids induced with streptozotocin in mice. Clin Exp Immunol 43: 425–429

    PubMed  CAS  Google Scholar 

  • Itoh M, Junauchi M, Sato K, Kisamori S, Fukuma N, Hirooka Y, Nihei N (1984) Abnormal lymphocyte function precedes hyperglycemia in mice treated with multiple low doses of streptozotocin. Diabetologia 27: 109–112

    Article  PubMed  Google Scholar 

  • Jankovic DB, Markovic BM, Spector NH (1987) Neuroendocrine interactions: proceedings of the second international workshop on neuroimmunomodulation. Ann NY Acad Sci 496: 756–764

    Google Scholar 

  • Kantwerk G, Cobbold S, Waldmann H, Kolb H (1987) L3T4 and Lyt-2 T cells are both involved in the generation of low-dose streptozotocin-induced diabetes in mice. Clin Exp Immunol 70: 585–592

    PubMed  CAS  Google Scholar 

  • Karam JH, Lewitt P, Young C, Nowlain R, Frankel B, Fujiya H, Freedman Z, Grodsky G (1980) Insulinopenic diabetes after rodenticide (Vacor) ingestion: a unique model of acquired diabetes in man. Diabetes 29: 971–978

    Article  PubMed  CAS  Google Scholar 

  • Kiesel U, Frey tag G, Kolb H (1980) Transfer of experimental autoimmune insulitis by spleen cells in mice. Diabetologia 19: 516–520

    Article  PubMed  CAS  Google Scholar 

  • Kiesel U, Greulich B, Moume CMS, Kolb H (1981) Induction of experimental autoimmune diabetes by low dose streptozotocin treatment in genetically resistant mice. Immunol Lett 3: 227–230

    Article  PubMed  CAS  Google Scholar 

  • Kiesel U, Falkenberg FW, Kolb H (1983) Genetic control of low-dose streptozotocin-induced autoimmune diabetes in mice. J Immunol 130: 1719–1722

    PubMed  CAS  Google Scholar 

  • Kim YT, Steinberg C (1984) Immunologic studies on the induction of diabetes in experimental animals. Cellular basis for the induction of diabetes by streptozotocin. Diabetes 33: 771–777

    Article  PubMed  CAS  Google Scholar 

  • Klinkhammer C, Popowa P, Gleichmann H (1988) Specific immunity to the diabetogen streptozotocin: cellular requirements for induction of lymphoproliferation. Diabetes 37: 74–80

    Article  PubMed  CAS  Google Scholar 

  • Kneip TJ, Daisey JM, Solomon JJ, Hershmann RJ (1983) N-nitroso compounds: evidence for their presence in airborne particles. Science 221: 1045–1046

    Article  PubMed  CAS  Google Scholar 

  • Kolb H (1987) Mouse models of insulin dependent diabetes: low-dose streptozotocin-induced diabetes and nonobese diabetic (NOD) mice. Diabetes Metab Rev 3: 751–778

    Article  PubMed  CAS  Google Scholar 

  • Kolb H, Oschilewski M, Schwab E, Oschilewski U, Kiesel U (1985) Effect of cycloporin A on low-dose streptozotocin diabetes in mice. Diabetes Res 2: 191–193

    PubMed  CAS  Google Scholar 

  • Kolb-Bachofen V, Epstein S, Kiesel U, Kolb H (1988) Low dose streptozotocin-induced diabetes in mice. Electron microscopy reveals single cell insulitis before diabetes onset. Diabetes 37: 21–27

    Article  PubMed  CAS  Google Scholar 

  • Kromann H, Christy M, Egeberg J, Lernmark A, Nerup J (1982) Absence of H-2 geietic influence on streptozotocin-induced diabetes in mice. Diabetologia 23: 114–118

    Article  PubMed  CAS  Google Scholar 

  • Krowlewski A, Warram JH, Rand LI, Kahn CR (1987) Epidemiological approach to the etiology of type I diabetes mellitus and its complications. N Engl J Med 317: 1390–1398

    Article  Google Scholar 

  • Lazarus IS, Sharpiro IH (1973) Influence of nicotinamde and pyridine nucleotides on streptozotocin and alloxan-induced pancreatic B-cell cytotoxicity. Diabetes 22: 499–506;

    PubMed  CAS  Google Scholar 

  • Le PH, Leiter EH, Leyendecker JR (1985) Genetic control of susceptibility to streptozotocin diabetes in inbred mice: effect of testosterone and H-2 haplotype. Endocrinology 116: 2450–2455

    Article  PubMed  CAS  Google Scholar 

  • Loux SP, Wilson GL (1984) Effects of streptozotocin on a clonal isolate of rat insulinoma cells. Biochim Biochim Biophys Acta 804: 387–392

    Article  Google Scholar 

  • Loux SP, Woodley SE, Patton NJ, Wilson GL (1986) Mechanisms of nitrosoamide-induced ß cell damage: alterations in DNA. Diabetes 35: 866–872

    Article  Google Scholar 

  • Lefebvre PJ (1988) Clinical forms of diabetes mellitus. In: Lefebvre PJ, Pipeleers DG (eds) The pathology of the endocrine pancreas in diabetes, Springer, Berlin Heidelberg New York, pp 1–16

    Google Scholar 

  • Leiter EH (1982) Multiple low dose streptozotocin-induced hyperglycemia and insulitis in C57BL mice: influence of inbred background, sex, and thymus. Proc Soc Natl Acad Sci USA 79: 630–634

    Article  CAS  Google Scholar 

  • Leiter EH (1985) Differential susceptibility of BALB/c sublines to diabetes induction by multi-dose streptozotocin treatment. Curr Top Microbiol Immunol 122: 78–85

    Article  PubMed  CAS  Google Scholar 

  • Leiter EH (1987) Murine macrophages and pancreatic ß cells. Chemotactic properties of insulin and ß-cytostatic action of interleukin 1. J Exp Med 166: 1174–1179

    Article  PubMed  CAS  Google Scholar 

  • Leiter EH, Kuff EL (1984) Intracisternal type A particles in murine pancreatic B cells: immunocytochemical demonstration of increased antigen (p73) in genetically diabetic mice. Am J Pathol 114:46–55

    PubMed  CAS  Google Scholar 

  • Leiter EH, Wilson GL (1988) Viral interactions with pancreatic ß cells. In: Lefebvre PJ, Pipeleers, O (eds) The pathology of the endocrine pancreas in diabetes. Springer, Berlin Hiedelberg New York, pp 85–105

    Chapter  Google Scholar 

  • Leiter EH, Beamer WG, Shultz LD (1983) The effect of immunosuppression on streptozotocin- induced diabetes in C57BL/K mice. Diabetes 32: 148–155

    Article  PubMed  CAS  Google Scholar 

  • Leiter EH, Fewell JW, Kuff EL (1986) Glucose induces intracisternal type A retroviral gene transcription and translation in pancreatic ß cells. J Exp Med 163: 87–100

    Article  PubMed  CAS  Google Scholar 

  • Leiter EH, Le PH, Coleman DL (1987) Susceptibility to db gene and streptozotocin induced diabetes in C57BL mice: control by gender associated MHC-unlinked traits. Immunogenetics 26: 6–13

    Article  PubMed  CAS  Google Scholar 

  • Leiter EH, Le PH, Prochazka M, Worthen SM, Huppi K (1989) Genetic and environemental control of diabetes induction by multi-dose streptozotocin in two BALB/c substrains. Diabetes Res 9: 5–10

    Google Scholar 

  • Like AA, Rossini AA (1976) Streptozotocin-induced pancreatic insulitis: new model of diabetes mellitus. Science 193: 415–417

    Article  PubMed  CAS  Google Scholar 

  • Maaren NK, Neufeld M, Maughlin JV, Tayler G (1980) Androgen sensitization of steptozotocin-induced diabetes in mice. Diabetes 29: 710–716

    Google Scholar 

  • Magee PN (1975) N-nitroso compounds and related carcinogens. In: Searl CE (ed) Chemical carcinogens. American Chemical Society, Washington, DC, pp 491–509

    Google Scholar 

  • Magee PN, Barnes JM (1956) The production of malignant primary hepatic tumors in the rat by feeding dimethylnitrosamine. Br J Cancer 10: 114–120

    Article  PubMed  CAS  Google Scholar 

  • Mattes WB, Hartley JA, Kohn KW, Matheson DW (1988) GC-rich regions in genomes as targets for DNA alkylation. Carcinogenesis 9: 2065–2072

    Article  PubMed  CAS  Google Scholar 

  • Mazelis AG, Albert D, Crisa C, Fiore H, Parasaram D, Franklin B, Ginsberg-Fellner F, Mvoy RC (1987) Relationship of stressful housing conditions to the onset of diabetes mellitus induced by multiple, sub-diabetogenic doses of streptozotocin in mice. Diabetes Res 6: 195–200

    PubMed  CAS  Google Scholar 

  • Mvoy RC, Andersson J, Sandler S, Hellerstrom C (1984) Mutiple low-dose streptozotocin-induced diabetes in the mouse. Evidence for stimulation of a cytotoxic cellular immune response against an insulin-producing ß cell line. J Clin Invest 74: 715–722

    Article  Google Scholar 

  • Mvoy RC, Thomas NM, Hellerstrom C, Ginsberg-Fellner F, Moran TM (1987) Multiple low-dose steptozotocin-induced diabetes in the mouse: further evidence for involvement of an anti-B cell cytotoxic cellular autoimmune response. Diabetologia 30: 232–238

    Article  Google Scholar 

  • Morley JE, Kay NE, Solomon GF, Plotniko NP (1987) Neuropeptides: conductors of the immune orchestra. Life Sci 41: 527–544

    Article  PubMed  CAS  Google Scholar 

  • Morrow DL, Freedman A, Craighead JE (1980) Testosterone effect on experimental diabetes mellitus in encephalomyocarditis (EMC) virus infectd mice. Diabetologia 18: 247–249

    Article  PubMed  CAS  Google Scholar 

  • Mossman BT, Wilson GL, Ireland C, Craighead JE (1985) A diabetogenic analogue of streptozotocin with dissimilar mechanisms of action of pancreaticß cells. Diabetes 34: 602–607

    Article  PubMed  CAS  Google Scholar 

  • Nakamura M, Nagafuchi S, Yamaguchi K, Takaki R (1984) The role of thymiclmmunity and insulitis in the development of streptozotocin-induced diabetes in mice. Diabetes 33: 894–900

    Article  PubMed  CAS  Google Scholar 

  • Nakano K, Mordes JP, Handler ES, Greiner DL, Rossini AA (1988) Role of host immune system in BB/Wor rat: predisposition to diabetes resides in bone marrow. Diabetes 37: 522–525

    Article  Google Scholar 

  • Nerup J, Mandrup-Xoulsen T, Molvig J, Helqvist S, Wogensen L, Egeberg J (1988) Mechanisms of pancreatic ß cell destruction in type 1 diabetes. Diabetes Care 11: 16–23

    PubMed  Google Scholar 

  • Nichols WK, Vann LL, Spellman JB (1981) Streptozotoein effects on T lymphocytes and bone marrow cells. Clin Exp Immunol 46: 627–632

    PubMed  CAS  Google Scholar 

  • Oldstone MBA (1988) Prevention of type 1 diabetes in nonobese diabetic mice by virus infection. Science 23: 500–502

    Article  Google Scholar 

  • Oschilewski M, Schwab E, Kiesel U, Opitz U, Stunkel K, Kolb-Bachofen V, Kolb H (1986) Administration of silica or monoclonal antibody to Thy-1 prevents low-dose streptozotocin- induced diabetes in mice. Immunol Lett 12: 289–294

    Article  PubMed  CAS  Google Scholar 

  • Paik SG, Blue M, Fleischer N, Shin SI (1982a) Diabetes susceptibility of BALB/cBOM mice treated with streptozotoein. Inhibition by lethal irradition and restoration by splenic lymphocytes. Diabetes 31: 808–815

    Article  PubMed  CAS  Google Scholar 

  • Paik SG, Michelis MA, Kim YT, Shin S (1982b) Induction of insulin dependent diabetes by streptozotoein. Inhibition by estrogens and potentiation by androgens. Diabetes 31: 724–729

    Article  PubMed  CAS  Google Scholar 

  • Prosser PR, Karam JH (1978) Diabetes mellitus following rodenticide ingestion in man. JAMA 239: 1148–1150

    Article  PubMed  CAS  Google Scholar 

  • Pukel C, Baquerizo H, Rabinovitch A (1988) Destruction of rat islet cell monolayers by cytokines. Synergistic interactions of interferon-γ, tumor necrosis factor, lymphotoxin, and interleukin 1. Diabetes 37: 133–136

    Article  PubMed  CAS  Google Scholar 

  • Rakieten N (1963) Studies on the diabetogenic action of streptozotoein (NSC-37917). Cancer Chemother Rep 29: 91–103

    Google Scholar 

  • Rossini A A, Appel M, Williams RM, Like A A (1977) Genetic influence of streptozotocin-induced insulitis and hyperglycemia. Diabetes 26: 916–920

    Article  PubMed  CAS  Google Scholar 

  • Rossini A A, Williams RM, Appel MC, Like AA (1978a) Sex differences in the multi-dose streptozotoein model of diabetes. Endocrinology 103: 1518–1520

    Article  PubMed  CAS  Google Scholar 

  • Rossini A A, Williams RM, Appel MC, Like AA (1978b) Complete protection from low-dose streptozotocin-induced diabetes in mice. Nature 276: 182–184

    Article  PubMed  CAS  Google Scholar 

  • Sander J, Burke G (1971) Induktion maligner Tumoren bei Ratten durch orale Gabe von 2-Imidazolidinon und Nitrat. Krebsforschnung 75: 301–310

    Article  CAS  Google Scholar 

  • Sandler S, Andersson A (1981) Islet implantation into diabetic mice with pancreatic insulitis. Acta Pathol Microbiol Immunol Scand [A] 89: 107–112

    CAS  Google Scholar 

  • Sanz N, Karam JH, Horita S, Bell GI (1986) Prevalence of insulin-gene mutations in non-insulin-dependent diabetes mellitus. N Engl J Med 314: 1322

    PubMed  CAS  Google Scholar 

  • Schwab E, Burkart V, Freytag G, Kiesel U, Kolb H (1986) Inhibition of immune mediated low-dose streptozotoein diabetes by agents which reduce vascular permeability. Immunopharmacology 12: 17–21

    Article  PubMed  CAS  Google Scholar 

  • Schwizer RW, Leiter EH, Evans R (1984) Macrophage-mediated cytotoxicity against cultured pancreatic islet cells. Transplantation 37: 539–544

    Article  PubMed  CAS  Google Scholar 

  • Sen WP (1973) Nitrosophyrrolidine and dimethylnitrosamine in bacon. Nature 241: 473–475

    Article  PubMed  CAS  Google Scholar 

  • Sensi M, Pozzilli P, Ventiglia L, Doniach I, Cudworth AG (1982) Histology of the islets of Langerhans following administration of human lymphocytes into athymic mice. Clin Exp Immunol 49: 81–86

    PubMed  CAS  Google Scholar 

  • Serreze DV, Leiter EH, Worthen SM, Shultz LD (1988a) NOD marrow stem cells adoptively transfer diabetes to resistant (NOD x NON) F1 mice. Diabetes 37: 252–255

    Article  PubMed  CAS  Google Scholar 

  • Serreze DV, Leiter EH, Kuff EL, Jardieu P, Ishizaka K (1988b) Molecular mimicry between insulin and retroviral antigen p73: development of cross reactive autoantibodies in sera of NOD and C57BL/Ks- db/db mice. Diabetes 37: 351–357

    Article  PubMed  CAS  Google Scholar 

  • Serreze DV, Worthen SM, Leiter EH (1989) Genetic control of immunological suppressor function in BALB/c substrains: potential relation to diabetes susceptibility. Clin Exp Immunol (manuscript submitted)

    Google Scholar 

  • Sesfontein WJ, Huster P (1966) Nitrosoamines as environmental carcinogens II. evidence for the presence of nitrosoamines in tobacco smoke condensate. Cancer Res 26: 575–583

    Google Scholar 

  • Shiloh Y, Becker Y (1981) Kinetics of O6- methylguanine repair in human normal and ataxia telangiectasia cell lines and correlation on repair capacity with cellular sensitivity to methylating agents. Cancer Res 41: 5114–5120

    PubMed  CAS  Google Scholar 

  • Shooter KV, Slade TA (1977) The stability of methyl and ethyl phosphotriesters in DNA in vivo. Chem Biol Interact 19: 353: 353–362

    Article  PubMed  CAS  Google Scholar 

  • Shooter KV, Slade TA, O’Connor PJ (1977) The formation and stability of methyl phosphotriesters in the DNA of rat tissues after treatment with the carcinogen N,N-dimethylnitrosoamine. Chem Biol Interact 19: 363–374

    Article  PubMed  CAS  Google Scholar 

  • Shultz LD, Sidman CL (1987) Genetically determined murine models of immunodeficiency. Annu Rev Immunol 5: 367–375

    Article  PubMed  CAS  Google Scholar 

  • Sklar R, Srauss B (1980) Removal of O6- methylguanine from DNA of normal and xeroderma pigmentosum-derived lymphoblastoid lines. Nature 289: 417–420

    Article  Google Scholar 

  • Stavehagen JB, Robins DM (1988) An ancient pro virus has imposed androgen regulation on the adjacent mouse sex-limited protein gene. Cell 55: 247–254

    Article  Google Scholar 

  • Suenaga K, Yoon JW (1988) Association of ß cell specific-expression of endogenous retrovirus with development of insulitis and diabetes in NOD mouse. Diabetes 37: 1722–1726

    Article  PubMed  CAS  Google Scholar 

  • Suzuki T, Yamada T, Takao T, Fujimura T, Kawamura E, Shimizu ZM, Yamashita R, Nomoto K (1987) Diabetogenic effects of lymphocyte transfusion on the NOD or NOD nude mouse. In: Rygaard J, Brunner N, Graem N, Sprang-Thomsen M (eds) Immune-deficient animals in biomedical research. Karger, Basel, pp 112–116

    Google Scholar 

  • Tjalve H (1983) Streptozotocin: distribution, metabolism, and mechanisms of action. Ups J Med Sci [Suppl] 39: 145–157

    Google Scholar 

  • Uehara A, Gottschall PE, Dahl RR, Arimuri A (1987) Interleukin-1 stimulates ACTH release by an indirect action which requires endogenous corticotropin releasing factor. Endocrinology 121:1580–1583

    Article  PubMed  CAS  Google Scholar 

  • Wiggans RG, Woolley PV, Maonald JS, Smythe T, Ueno W, Schein PS (1958) Phase II trial of streptozotocin, mitomycin-c, and 5-fluorouracil (SMF) in treatment of advanced pancreatic cancer. Cancer 41: 387–391

    Article  Google Scholar 

  • Wilander E, Boquist L (1972) Streptozotocin diabetes in the Chinese hamster: blood glucose and structural changes in the first 24 hours. Horm Metab Res 4: 42–65

    Article  Google Scholar 

  • Wilson GL, Hartig PC, Patton NJ, Loux SP (1988) Mechanisms of nitrosourea-induced ß cell damage: activation of poly (ADP-ribose) synthetase and cellular distribution. Diabetes 37: 213–216

    Article  PubMed  CAS  Google Scholar 

  • Wolf J, Lilly F, Shin S (1984) The influence of genetic backoround on the susceptibility of inbred mice to streptozotocin-induced diabetes. Diabetes 33: 567–571

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto H, Uchigata Y, Okamoto H (1981) Streptozotocin and alloxan induce DNA strand breaks and poly(ADP-ribose) synthetase in pancreatic islets. Nature 294: 284–286

    Article  PubMed  CAS  Google Scholar 

  • Yoon JW, Ray UR (1986) Perspectives on the role of viruses in insulin-dependent diabetes. Diabetes Care 8: 39–44

    Google Scholar 

  • Yoon JW, Mlintock PR, Bachurski CJ, Longstreth JD, Notkins, AL (1985) Virus induced diabetes mellitus. No evidence for immune mechanisms in the destruction of ß cells by the D-variant of enchephalomyocarditis virus. Diabetes 34: 922–925

    Article  PubMed  CAS  Google Scholar 

  • Zarbl H, Sukumar S, Arthur AV, Martin-Zanca D, Barbacid M (1985) Direct mutagenesis of Ha-ras-1 oncogenes by N-nitroso-N-methylurea during initiation of mammary carcinogenesis in rats. Nature 315: 382–385

    Article  PubMed  CAS  Google Scholar 

  • Ziegler M, Ziegler B, Hehmke B, Dietz H, Hildmann W, Kauert C (1984) Autoimmune response directed to pancreatic ß cells in rats induced by combined treatment with low doses of streptozotocin and complete Freund’s adjuvant. Biomed Biochim Acta 43: 675–681

    PubMed  CAS  Google Scholar 

  • Ziegler M, Teneberg S, Witt S, Ziegler B, Hehmke B, Kohnert KD, Egeberg J, Karlsson KA, Lernmark A (1988) Islet β-cytotoxic monoclonal antibody against glycolipids in experimental diabetes induced by low dose streptozotocin and Freund’s adjuvant. J Immunol 140: 4144–4150

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin · Heidelberg

About this paper

Cite this paper

Wilson, G.L., Leiter, E.H. (1990). Streptozotocin Interactions with Pancreatic β Cells and the Induction of Insulin-Dependent Diabetes. In: Dyrberg, T. (eds) The Role of Viruses and the Immune System in Diabetes Mellitus. Current Topics in Microbiology and Immunology, vol 156. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-75239-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-75239-1_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-75241-4

  • Online ISBN: 978-3-642-75239-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics