Advertisement

Streptozotocin Interactions with Pancreatic β Cells and the Induction of Insulin-Dependent Diabetes

Conference paper
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 156)

Abstract

The single most consistent finding in insulin-dependent diabetes mellitus (IDDM) is a substantial reduction in insulin secreting β cells (GEPTS 1965). The pathogenic factors responsible for this cellular destruction are complex and most likely differ among different subgroups in this category. Although these factors have not yet been definitively elucidated, it has become apparent that genetic influences and both humoral and cell mediated immunological phenomena are involved (EISENBARTH 1986; LEFEBVRE 1988). Also, a role for environmental factors in the etiology of IDDM has recently been indicated by epidemiological studies which have demonstrated that there is a marked increase in newly diagnosed cases of IDDM, which can only be explained by changes in environmental influences such as chemicals and viruses (KROWLEWSKI et al. 1987). Direct evidence that an ingested chemical can cause IDDM in humans comes from case reports of individuals who ate the rat poison Vacor in suicide attempts. Many of these individuals developed ketosis prone diabetes mellitus (KARAM et al. 1980; PROSSER and KARAM 1978). Studies in laboratory animals have provided additional evidence that xenobiotics can cause a critical reduction in insulin secreting cells. It is well established that nitrosamides like streptozotocin (SZ) and chlorozotocin and other complex amines like alloxan cause severe diabetes in laboratory animals (DULIN and SORET 1977; COOPERSTEIN and WATKINS 1981; MOSSMAN et al. 1985).

Keywords

Major Histocompatibility Complex Nicotinamide Adenine Dinucleotide Major Histocompatibility Complex Antigen Acta Pathol Microbiol Immunol Stimulate ACTH Release 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ames BN (1983) Dietary carcinogens and anticarcinogens: oxygen radicals and degenerative diseases. Science 221: 1256–1264PubMedCrossRefGoogle Scholar
  2. Andersson A (1979) Islet implantation normalizes hyperglycemia caused by streptozotocin-induced insulitis. Lancet 1: 581–584PubMedCrossRefGoogle Scholar
  3. Andersson A, Borg H, Hallberg A, Hellerstrom C, Sandler S, Schnell A (1984) Long-term effects of cyclosporin A on cultured mouse pancreatic islets. Diabetologia 27: 66–69PubMedCrossRefGoogle Scholar
  4. Appel MC, Rossini A A, Williams RM, Like A A (1978) Viral studies in streptozotocin-induced pancreatic insulitis. Diabetologia 15: 327–336PubMedCrossRefGoogle Scholar
  5. Babu PG, Huber SA, Craighead JE (1985) Immunology of viral diabetes. Surv Synth Pathol Res 4: 1–7PubMedGoogle Scholar
  6. Beattie G, Lannom R, Lipsick J, Kaplan NO, Osier AG (1980) Streptozotocin-induced diabetes in athymic and conventional BALB/c mice. Diabetes 29: 146–150PubMedCrossRefGoogle Scholar
  7. Bailey CJ, Ahmed-Sorour H (1980) Role of ovarian hormones in the long term control of glucose homeostasis. Effects on insulin secretion. Diabetologia 19: 475–481PubMedCrossRefGoogle Scholar
  8. Beppu H, Maruta K, Kurner T, Kolb H (1987) Diabetogenic action of streptozotocin: essential role of membrane permeability. Acta Endocrinol 114: 90–95PubMedGoogle Scholar
  9. Besedovsky HO, Del Rey A, Sorkin E, Lotz W, Schwulera U (1985) Lymphoid cells produce an immunoregulatory glucocorticoid increasing factor (GIF) acting through the pituitary gland. Clin Exp Immunol 59: 622–628PubMedGoogle Scholar
  10. Besedovsky H, Del Rey A, Sorkin E, Dinarello A (1986) Immunoregulatory feedback between IL-1 and glucocorticoid hormones. Science 233: 652–654PubMedCrossRefGoogle Scholar
  11. Blue ML, Shin SI (1984) Diabetes induction by subdiabetogenic doses of streptozotocin in BALB/OM mice. Noninvolvement of host B-lymphocyte functions. Diabetes 33: 105–110PubMedCrossRefGoogle Scholar
  12. Bolaffi JL, Nowlan RE, Cruz L, Grodsky GM (1986) Progressive damage of cultured pancreatic islets after single early exposure to streptozotocin. Diabetes 35: 1027–1033PubMedCrossRefGoogle Scholar
  13. Bolaffi JL, Nagamatsu S, Harris J, Grodsky GM (1987) Protection by thymidine, an inhibitor of polyadenosine diphosphate ribosylation, of streptozotocin inhibition of insulin secretion. Endocrinology 120:2117–2122PubMedCrossRefGoogle Scholar
  14. Bonnevie-Nielsen V, Steifes MW, Lernmark A (1981) A major loss in islet mass and B-cell function precedes hyperglycemia in mice given multiple low doses of streptozotocin. Diabetes 30: 424–429PubMedCrossRefGoogle Scholar
  15. Brosky G, Logothetopoulos J (1969) Streptozotocin diabetes in the mouse and guinea pig. Diabetes 18:606–613PubMedGoogle Scholar
  16. Buschard K, Rygaard J (1977) Passive transfer of streptozotocin induced diabetes mellitus with spleen cells. Acta Pathol Microbiol Immunol Scand [C] 85: 469–472Google Scholar
  17. Buschard K, Rygaard J (1978) Is the diabetogenic effect of streptozotocin in part thymus-dependent? Acta Pathol Microbiol Immunol Scand [C] 86: 23–27Google Scholar
  18. Buschard K, Madsbad S, Rygaard J (1978) Passive transfer of diabetes mellitus from man to mouse. Lancet 2:908–910CrossRefGoogle Scholar
  19. Campbell IL, Wong GHW, Schräder JW, Harrison LC (1985) Interferon-gamma enhances the expression of the major histocompatibility class I antigens on mouse pancreatic ß cells. Diabetes 34:1205–1209PubMedCrossRefGoogle Scholar
  20. Campbell IL, Oxbrow L, Koulmanda M, Harrison LC (1988) IFN-gamma induces islet cell MHC antigens and inhances autoimmune, streptozotocin-induced diabetes in the mouse. J Immunol 140:1111–1116PubMedGoogle Scholar
  21. Ciaranello RD, Lipsky A, Axelrod J (1974) Association between fighting behavior and catecholamine biosynthetic enzyme activity in two inbred mouse sublines. Proc Natl Acad Sci USA 71:3006–3008PubMedCrossRefGoogle Scholar
  22. Cooperstein SJ, Watkins D (1981) Action of toxic drugs on islets. In: Cooperstein SJ, Watkins D (eds) The islets of Langerhans. Academic, New York, pp 387–425Google Scholar
  23. Craighead JE (1978) Current views of insulin -dependent diabetes mellitus. N Engl J Med 299: 1439–1445PubMedCrossRefGoogle Scholar
  24. Day RS, Ziolkowski CHJ, Scudiero DA, Meyer SA, Lubiniecki AS, Girardi AJ, Galloway SM, Bynum GD (1980) Defective repair of alkylated DNA by human tumour SV40 transformed human cell strains. Nature 288: 724–727PubMedCrossRefGoogle Scholar
  25. Dayer-Metroz MD, Kimoto M, Izui S, Vassalli P, Renold AE (1988) Effect of helper and/or cytotoxic T-lymphocyte depletion on low-dose streptozotocin-induced diabetes in C57BL/6J mice. Diabetes 37: 1082–1089PubMedCrossRefGoogle Scholar
  26. Defize J, Derodra JK, Riddell RH, Hunt RH (1988) Changes in rat and human pepsinogen phenotypes induced by N’-methyl-N’nitro-N-nitrosoguanidine. Cancer 62: 1958–1961PubMedCrossRefGoogle Scholar
  27. Dolan ME, Oplinger M, Pegg AE (1988) Sequence specificity of guanine alkylation and repair. Carcinogenesis 9: 2139–2143PubMedCrossRefGoogle Scholar
  28. Dulin WE, Soret MG (1977) Chemically and hormonally induced diabetes. In: Volk BW, Wellman KF (eds) The diabetic pancreas. Planum, New York, pp 425–466Google Scholar
  29. Eisenbarth GS (1986) Type I diabetes mellitus: a chronic autoimmune disease. N Engl J Med 314:1360–1368PubMedCrossRefGoogle Scholar
  30. Eizirik Dl, Sandler S, Welsh N, Hellerstrom C (1988) Preferential reduction of insulin production in mouse pancreatic islets maintained in culture after streptozotocin exposure. Endocrinology 122:1242–1249PubMedCrossRefGoogle Scholar
  31. Farr AG, Mannschreck JW, Anderson SK (1988) Expression of class II MHC antigens in murine pancreas after streptozotocin-induced insulitis. Diabetes 37: 1373–1379PubMedCrossRefGoogle Scholar
  32. Flohr K, Kiesel U, Freytag G, Kolb H (1983) Insulitis as a consequence of immune dysregulation: further evidence. Clin Exp Immunol 53: 605–613PubMedGoogle Scholar
  33. Foulis AK, Bottazzo GF (1988) Insulitis in the human pancreas. In: Lefebvre PJ, Pipeleers G (eds) The pathology of the endocrine pancreas in diabetes. Springer, Berlin Heidelberg New York, pp 41–52CrossRefGoogle Scholar
  34. Gepts W (1965) Pathological anatomy of the pancreas in juvenile diabetes mellitus. Diabetes 14:619–633PubMedGoogle Scholar
  35. Goth-Goldstein R (1987) MNNG-induced partial phenotypic reversion of Mer- cells. Carcinogenesis 8: 1449–1453PubMedCrossRefGoogle Scholar
  36. Gubbels E, Poort-Keesom R, Hilgers J (1985) Genetically contaminated BALB/c nude mice. Curr Top Microbiol Immunol 122: 86–88PubMedCrossRefGoogle Scholar
  37. Hall J, Bresil H, Montesano R (1985) O6-Alkyguanine DNA alyltransferase activity in monkey, human and rat liver. Carcinogenesis 6: 209–211Google Scholar
  38. Haneda M, Chan SJ, Kwok SCM, Rubenstein AH, Steiner DF (1983) Studies on mutant human insulin genes: identification and sequence analysis of a gene encoding [Sers24] insulin. Proc Natl Acad Sci USA 80: 6366–6370PubMedCrossRefGoogle Scholar
  39. Harbour DV, Blalock JE (1987) Leukocyte production of endorphins. In: Jankovic DB, Markovic BM, Spector NH (eds) Neuroendocrine interactions: proceedings of the second international workshop on neuroimmunomodulation. Ann NY Acad Sci 496: 192–195Google Scholar
  40. Hawksworth GM, Hill JJ (1974) The in vivo formation of N-nitrosamines in the rabbit bladder and their subsequent absorption. Br J Cancer 29: 353–358PubMedCrossRefGoogle Scholar
  41. Haynes MK, Huber SA, Craighead JE (1987) Helper-inducer T-lymphocytes mediate diabetes in EMC-infected BALB/ mice. Diabetes 36: 877–881PubMedCrossRefGoogle Scholar
  42. Hedler L, Marquardt P (1968) Occurrence of diethylnitrosamine in some samples of food. Food Cosmet Toxicol 6: 341–349PubMedCrossRefGoogle Scholar
  43. Helgason T, Jonasson MR (1981) Evidence for a food additive as a cause of ketosis-prone diabetes. Lancet 2: 716–720PubMedCrossRefGoogle Scholar
  44. Helgason T, Even SWB, Ross IS, Stowers JM (1982) Diabetes produced in mice by smoked cured mutton. Lancet 2: 1017–1021PubMedCrossRefGoogle Scholar
  45. Herold KC, Montag AG, Fitch FW (1987) Treatment with anti-T-lymphocyte antibodies prevents induction of insulitis in mice given multiple doses of streptozotocin. Diabetes 36: 796–801PubMedCrossRefGoogle Scholar
  46. Hill MR, Stith ED, Mallum RE (1986) Interleukin 1: a regulatory role in glucocorticoid-regulated hepatic metabolism. J Immunol 137: 858–862PubMedGoogle Scholar
  47. Huang SW, Taylor GE (1981) Immune insulitis and antibodies to nucleic acids induced with streptozotocin in mice. Clin Exp Immunol 43: 425–429PubMedGoogle Scholar
  48. Itoh M, Junauchi M, Sato K, Kisamori S, Fukuma N, Hirooka Y, Nihei N (1984) Abnormal lymphocyte function precedes hyperglycemia in mice treated with multiple low doses of streptozotocin. Diabetologia 27: 109–112PubMedCrossRefGoogle Scholar
  49. Jankovic DB, Markovic BM, Spector NH (1987) Neuroendocrine interactions: proceedings of the second international workshop on neuroimmunomodulation. Ann NY Acad Sci 496: 756–764Google Scholar
  50. Kantwerk G, Cobbold S, Waldmann H, Kolb H (1987) L3T4 and Lyt-2 T cells are both involved in the generation of low-dose streptozotocin-induced diabetes in mice. Clin Exp Immunol 70: 585–592PubMedGoogle Scholar
  51. Karam JH, Lewitt P, Young C, Nowlain R, Frankel B, Fujiya H, Freedman Z, Grodsky G (1980) Insulinopenic diabetes after rodenticide (Vacor) ingestion: a unique model of acquired diabetes in man. Diabetes 29: 971–978PubMedCrossRefGoogle Scholar
  52. Kiesel U, Frey tag G, Kolb H (1980) Transfer of experimental autoimmune insulitis by spleen cells in mice. Diabetologia 19: 516–520PubMedCrossRefGoogle Scholar
  53. Kiesel U, Greulich B, Moume CMS, Kolb H (1981) Induction of experimental autoimmune diabetes by low dose streptozotocin treatment in genetically resistant mice. Immunol Lett 3: 227–230PubMedCrossRefGoogle Scholar
  54. Kiesel U, Falkenberg FW, Kolb H (1983) Genetic control of low-dose streptozotocin-induced autoimmune diabetes in mice. J Immunol 130: 1719–1722PubMedGoogle Scholar
  55. Kim YT, Steinberg C (1984) Immunologic studies on the induction of diabetes in experimental animals. Cellular basis for the induction of diabetes by streptozotocin. Diabetes 33: 771–777PubMedCrossRefGoogle Scholar
  56. Klinkhammer C, Popowa P, Gleichmann H (1988) Specific immunity to the diabetogen streptozotocin: cellular requirements for induction of lymphoproliferation. Diabetes 37: 74–80PubMedCrossRefGoogle Scholar
  57. Kneip TJ, Daisey JM, Solomon JJ, Hershmann RJ (1983) N-nitroso compounds: evidence for their presence in airborne particles. Science 221: 1045–1046PubMedCrossRefGoogle Scholar
  58. Kolb H (1987) Mouse models of insulin dependent diabetes: low-dose streptozotocin-induced diabetes and nonobese diabetic (NOD) mice. Diabetes Metab Rev 3: 751–778PubMedCrossRefGoogle Scholar
  59. Kolb H, Oschilewski M, Schwab E, Oschilewski U, Kiesel U (1985) Effect of cycloporin A on low-dose streptozotocin diabetes in mice. Diabetes Res 2: 191–193PubMedGoogle Scholar
  60. Kolb-Bachofen V, Epstein S, Kiesel U, Kolb H (1988) Low dose streptozotocin-induced diabetes in mice. Electron microscopy reveals single cell insulitis before diabetes onset. Diabetes 37: 21–27PubMedCrossRefGoogle Scholar
  61. Kromann H, Christy M, Egeberg J, Lernmark A, Nerup J (1982) Absence of H-2 geietic influence on streptozotocin-induced diabetes in mice. Diabetologia 23: 114–118PubMedCrossRefGoogle Scholar
  62. Krowlewski A, Warram JH, Rand LI, Kahn CR (1987) Epidemiological approach to the etiology of type I diabetes mellitus and its complications. N Engl J Med 317: 1390–1398CrossRefGoogle Scholar
  63. Lazarus IS, Sharpiro IH (1973) Influence of nicotinamde and pyridine nucleotides on streptozotocin and alloxan-induced pancreatic B-cell cytotoxicity. Diabetes 22: 499–506;PubMedGoogle Scholar
  64. Le PH, Leiter EH, Leyendecker JR (1985) Genetic control of susceptibility to streptozotocin diabetes in inbred mice: effect of testosterone and H-2 haplotype. Endocrinology 116: 2450–2455PubMedCrossRefGoogle Scholar
  65. Loux SP, Wilson GL (1984) Effects of streptozotocin on a clonal isolate of rat insulinoma cells. Biochim Biochim Biophys Acta 804: 387–392CrossRefGoogle Scholar
  66. Loux SP, Woodley SE, Patton NJ, Wilson GL (1986) Mechanisms of nitrosoamide-induced ß cell damage: alterations in DNA. Diabetes 35: 866–872CrossRefGoogle Scholar
  67. Lefebvre PJ (1988) Clinical forms of diabetes mellitus. In: Lefebvre PJ, Pipeleers DG (eds) The pathology of the endocrine pancreas in diabetes, Springer, Berlin Heidelberg New York, pp 1–16Google Scholar
  68. Leiter EH (1982) Multiple low dose streptozotocin-induced hyperglycemia and insulitis in C57BL mice: influence of inbred background, sex, and thymus. Proc Soc Natl Acad Sci USA 79: 630–634CrossRefGoogle Scholar
  69. Leiter EH (1985) Differential susceptibility of BALB/c sublines to diabetes induction by multi-dose streptozotocin treatment. Curr Top Microbiol Immunol 122: 78–85PubMedCrossRefGoogle Scholar
  70. Leiter EH (1987) Murine macrophages and pancreatic ß cells. Chemotactic properties of insulin and ß-cytostatic action of interleukin 1. J Exp Med 166: 1174–1179PubMedCrossRefGoogle Scholar
  71. Leiter EH, Kuff EL (1984) Intracisternal type A particles in murine pancreatic B cells: immunocytochemical demonstration of increased antigen (p73) in genetically diabetic mice. Am J Pathol 114:46–55PubMedGoogle Scholar
  72. Leiter EH, Wilson GL (1988) Viral interactions with pancreatic ß cells. In: Lefebvre PJ, Pipeleers, O (eds) The pathology of the endocrine pancreas in diabetes. Springer, Berlin Hiedelberg New York, pp 85–105CrossRefGoogle Scholar
  73. Leiter EH, Beamer WG, Shultz LD (1983) The effect of immunosuppression on streptozotocin- induced diabetes in C57BL/K mice. Diabetes 32: 148–155PubMedCrossRefGoogle Scholar
  74. Leiter EH, Fewell JW, Kuff EL (1986) Glucose induces intracisternal type A retroviral gene transcription and translation in pancreatic ß cells. J Exp Med 163: 87–100PubMedCrossRefGoogle Scholar
  75. Leiter EH, Le PH, Coleman DL (1987) Susceptibility to db gene and streptozotocin induced diabetes in C57BL mice: control by gender associated MHC-unlinked traits. Immunogenetics 26: 6–13PubMedCrossRefGoogle Scholar
  76. Leiter EH, Le PH, Prochazka M, Worthen SM, Huppi K (1989) Genetic and environemental control of diabetes induction by multi-dose streptozotocin in two BALB/c substrains. Diabetes Res 9: 5–10Google Scholar
  77. Like AA, Rossini AA (1976) Streptozotocin-induced pancreatic insulitis: new model of diabetes mellitus. Science 193: 415–417PubMedCrossRefGoogle Scholar
  78. Maaren NK, Neufeld M, Maughlin JV, Tayler G (1980) Androgen sensitization of steptozotocin-induced diabetes in mice. Diabetes 29: 710–716Google Scholar
  79. Magee PN (1975) N-nitroso compounds and related carcinogens. In: Searl CE (ed) Chemical carcinogens. American Chemical Society, Washington, DC, pp 491–509Google Scholar
  80. Magee PN, Barnes JM (1956) The production of malignant primary hepatic tumors in the rat by feeding dimethylnitrosamine. Br J Cancer 10: 114–120PubMedCrossRefGoogle Scholar
  81. Mattes WB, Hartley JA, Kohn KW, Matheson DW (1988) GC-rich regions in genomes as targets for DNA alkylation. Carcinogenesis 9: 2065–2072PubMedCrossRefGoogle Scholar
  82. Mazelis AG, Albert D, Crisa C, Fiore H, Parasaram D, Franklin B, Ginsberg-Fellner F, Mvoy RC (1987) Relationship of stressful housing conditions to the onset of diabetes mellitus induced by multiple, sub-diabetogenic doses of streptozotocin in mice. Diabetes Res 6: 195–200PubMedGoogle Scholar
  83. Mvoy RC, Andersson J, Sandler S, Hellerstrom C (1984) Mutiple low-dose streptozotocin-induced diabetes in the mouse. Evidence for stimulation of a cytotoxic cellular immune response against an insulin-producing ß cell line. J Clin Invest 74: 715–722CrossRefGoogle Scholar
  84. Mvoy RC, Thomas NM, Hellerstrom C, Ginsberg-Fellner F, Moran TM (1987) Multiple low-dose steptozotocin-induced diabetes in the mouse: further evidence for involvement of an anti-B cell cytotoxic cellular autoimmune response. Diabetologia 30: 232–238CrossRefGoogle Scholar
  85. Morley JE, Kay NE, Solomon GF, Plotniko NP (1987) Neuropeptides: conductors of the immune orchestra. Life Sci 41: 527–544PubMedCrossRefGoogle Scholar
  86. Morrow DL, Freedman A, Craighead JE (1980) Testosterone effect on experimental diabetes mellitus in encephalomyocarditis (EMC) virus infectd mice. Diabetologia 18: 247–249PubMedCrossRefGoogle Scholar
  87. Mossman BT, Wilson GL, Ireland C, Craighead JE (1985) A diabetogenic analogue of streptozotocin with dissimilar mechanisms of action of pancreaticß cells. Diabetes 34: 602–607PubMedCrossRefGoogle Scholar
  88. Nakamura M, Nagafuchi S, Yamaguchi K, Takaki R (1984) The role of thymiclmmunity and insulitis in the development of streptozotocin-induced diabetes in mice. Diabetes 33: 894–900PubMedCrossRefGoogle Scholar
  89. Nakano K, Mordes JP, Handler ES, Greiner DL, Rossini AA (1988) Role of host immune system in BB/Wor rat: predisposition to diabetes resides in bone marrow. Diabetes 37: 522–525CrossRefGoogle Scholar
  90. Nerup J, Mandrup-Xoulsen T, Molvig J, Helqvist S, Wogensen L, Egeberg J (1988) Mechanisms of pancreatic ß cell destruction in type 1 diabetes. Diabetes Care 11: 16–23PubMedGoogle Scholar
  91. Nichols WK, Vann LL, Spellman JB (1981) Streptozotoein effects on T lymphocytes and bone marrow cells. Clin Exp Immunol 46: 627–632PubMedGoogle Scholar
  92. Oldstone MBA (1988) Prevention of type 1 diabetes in nonobese diabetic mice by virus infection. Science 23: 500–502CrossRefGoogle Scholar
  93. Oschilewski M, Schwab E, Kiesel U, Opitz U, Stunkel K, Kolb-Bachofen V, Kolb H (1986) Administration of silica or monoclonal antibody to Thy-1 prevents low-dose streptozotocin- induced diabetes in mice. Immunol Lett 12: 289–294PubMedCrossRefGoogle Scholar
  94. Paik SG, Blue M, Fleischer N, Shin SI (1982a) Diabetes susceptibility of BALB/cBOM mice treated with streptozotoein. Inhibition by lethal irradition and restoration by splenic lymphocytes. Diabetes 31: 808–815PubMedCrossRefGoogle Scholar
  95. Paik SG, Michelis MA, Kim YT, Shin S (1982b) Induction of insulin dependent diabetes by streptozotoein. Inhibition by estrogens and potentiation by androgens. Diabetes 31: 724–729PubMedCrossRefGoogle Scholar
  96. Prosser PR, Karam JH (1978) Diabetes mellitus following rodenticide ingestion in man. JAMA 239: 1148–1150PubMedCrossRefGoogle Scholar
  97. Pukel C, Baquerizo H, Rabinovitch A (1988) Destruction of rat islet cell monolayers by cytokines. Synergistic interactions of interferon-γ, tumor necrosis factor, lymphotoxin, and interleukin 1. Diabetes 37: 133–136PubMedCrossRefGoogle Scholar
  98. Rakieten N (1963) Studies on the diabetogenic action of streptozotoein (NSC-37917). Cancer Chemother Rep 29: 91–103Google Scholar
  99. Rossini A A, Appel M, Williams RM, Like A A (1977) Genetic influence of streptozotocin-induced insulitis and hyperglycemia. Diabetes 26: 916–920PubMedCrossRefGoogle Scholar
  100. Rossini A A, Williams RM, Appel MC, Like AA (1978a) Sex differences in the multi-dose streptozotoein model of diabetes. Endocrinology 103: 1518–1520PubMedCrossRefGoogle Scholar
  101. Rossini A A, Williams RM, Appel MC, Like AA (1978b) Complete protection from low-dose streptozotocin-induced diabetes in mice. Nature 276: 182–184PubMedCrossRefGoogle Scholar
  102. Sander J, Burke G (1971) Induktion maligner Tumoren bei Ratten durch orale Gabe von 2-Imidazolidinon und Nitrat. Krebsforschnung 75: 301–310CrossRefGoogle Scholar
  103. Sandler S, Andersson A (1981) Islet implantation into diabetic mice with pancreatic insulitis. Acta Pathol Microbiol Immunol Scand [A] 89: 107–112Google Scholar
  104. Sanz N, Karam JH, Horita S, Bell GI (1986) Prevalence of insulin-gene mutations in non-insulin-dependent diabetes mellitus. N Engl J Med 314: 1322PubMedGoogle Scholar
  105. Schwab E, Burkart V, Freytag G, Kiesel U, Kolb H (1986) Inhibition of immune mediated low-dose streptozotoein diabetes by agents which reduce vascular permeability. Immunopharmacology 12: 17–21PubMedCrossRefGoogle Scholar
  106. Schwizer RW, Leiter EH, Evans R (1984) Macrophage-mediated cytotoxicity against cultured pancreatic islet cells. Transplantation 37: 539–544PubMedCrossRefGoogle Scholar
  107. Sen WP (1973) Nitrosophyrrolidine and dimethylnitrosamine in bacon. Nature 241: 473–475PubMedCrossRefGoogle Scholar
  108. Sensi M, Pozzilli P, Ventiglia L, Doniach I, Cudworth AG (1982) Histology of the islets of Langerhans following administration of human lymphocytes into athymic mice. Clin Exp Immunol 49: 81–86PubMedGoogle Scholar
  109. Serreze DV, Leiter EH, Worthen SM, Shultz LD (1988a) NOD marrow stem cells adoptively transfer diabetes to resistant (NOD x NON) F1 mice. Diabetes 37: 252–255PubMedCrossRefGoogle Scholar
  110. Serreze DV, Leiter EH, Kuff EL, Jardieu P, Ishizaka K (1988b) Molecular mimicry between insulin and retroviral antigen p73: development of cross reactive autoantibodies in sera of NOD and C57BL/Ks- db/db mice. Diabetes 37: 351–357PubMedCrossRefGoogle Scholar
  111. Serreze DV, Worthen SM, Leiter EH (1989) Genetic control of immunological suppressor function in BALB/c substrains: potential relation to diabetes susceptibility. Clin Exp Immunol (manuscript submitted)Google Scholar
  112. Sesfontein WJ, Huster P (1966) Nitrosoamines as environmental carcinogens II. evidence for the presence of nitrosoamines in tobacco smoke condensate. Cancer Res 26: 575–583Google Scholar
  113. Shiloh Y, Becker Y (1981) Kinetics of O6- methylguanine repair in human normal and ataxia telangiectasia cell lines and correlation on repair capacity with cellular sensitivity to methylating agents. Cancer Res 41: 5114–5120PubMedGoogle Scholar
  114. Shooter KV, Slade TA (1977) The stability of methyl and ethyl phosphotriesters in DNA in vivo. Chem Biol Interact 19: 353: 353–362PubMedCrossRefGoogle Scholar
  115. Shooter KV, Slade TA, O’Connor PJ (1977) The formation and stability of methyl phosphotriesters in the DNA of rat tissues after treatment with the carcinogen N,N-dimethylnitrosoamine. Chem Biol Interact 19: 363–374PubMedCrossRefGoogle Scholar
  116. Shultz LD, Sidman CL (1987) Genetically determined murine models of immunodeficiency. Annu Rev Immunol 5: 367–375PubMedCrossRefGoogle Scholar
  117. Sklar R, Srauss B (1980) Removal of O6- methylguanine from DNA of normal and xeroderma pigmentosum-derived lymphoblastoid lines. Nature 289: 417–420CrossRefGoogle Scholar
  118. Stavehagen JB, Robins DM (1988) An ancient pro virus has imposed androgen regulation on the adjacent mouse sex-limited protein gene. Cell 55: 247–254CrossRefGoogle Scholar
  119. Suenaga K, Yoon JW (1988) Association of ß cell specific-expression of endogenous retrovirus with development of insulitis and diabetes in NOD mouse. Diabetes 37: 1722–1726PubMedCrossRefGoogle Scholar
  120. Suzuki T, Yamada T, Takao T, Fujimura T, Kawamura E, Shimizu ZM, Yamashita R, Nomoto K (1987) Diabetogenic effects of lymphocyte transfusion on the NOD or NOD nude mouse. In: Rygaard J, Brunner N, Graem N, Sprang-Thomsen M (eds) Immune-deficient animals in biomedical research. Karger, Basel, pp 112–116Google Scholar
  121. Tjalve H (1983) Streptozotocin: distribution, metabolism, and mechanisms of action. Ups J Med Sci [Suppl] 39: 145–157Google Scholar
  122. Uehara A, Gottschall PE, Dahl RR, Arimuri A (1987) Interleukin-1 stimulates ACTH release by an indirect action which requires endogenous corticotropin releasing factor. Endocrinology 121:1580–1583PubMedCrossRefGoogle Scholar
  123. Wiggans RG, Woolley PV, Maonald JS, Smythe T, Ueno W, Schein PS (1958) Phase II trial of streptozotocin, mitomycin-c, and 5-fluorouracil (SMF) in treatment of advanced pancreatic cancer. Cancer 41: 387–391CrossRefGoogle Scholar
  124. Wilander E, Boquist L (1972) Streptozotocin diabetes in the Chinese hamster: blood glucose and structural changes in the first 24 hours. Horm Metab Res 4: 42–65CrossRefGoogle Scholar
  125. Wilson GL, Hartig PC, Patton NJ, Loux SP (1988) Mechanisms of nitrosourea-induced ß cell damage: activation of poly (ADP-ribose) synthetase and cellular distribution. Diabetes 37: 213–216PubMedCrossRefGoogle Scholar
  126. Wolf J, Lilly F, Shin S (1984) The influence of genetic backoround on the susceptibility of inbred mice to streptozotocin-induced diabetes. Diabetes 33: 567–571PubMedCrossRefGoogle Scholar
  127. Yamamoto H, Uchigata Y, Okamoto H (1981) Streptozotocin and alloxan induce DNA strand breaks and poly(ADP-ribose) synthetase in pancreatic islets. Nature 294: 284–286PubMedCrossRefGoogle Scholar
  128. Yoon JW, Ray UR (1986) Perspectives on the role of viruses in insulin-dependent diabetes. Diabetes Care 8: 39–44Google Scholar
  129. Yoon JW, Mlintock PR, Bachurski CJ, Longstreth JD, Notkins, AL (1985) Virus induced diabetes mellitus. No evidence for immune mechanisms in the destruction of ß cells by the D-variant of enchephalomyocarditis virus. Diabetes 34: 922–925PubMedCrossRefGoogle Scholar
  130. Zarbl H, Sukumar S, Arthur AV, Martin-Zanca D, Barbacid M (1985) Direct mutagenesis of Ha-ras-1 oncogenes by N-nitroso-N-methylurea during initiation of mammary carcinogenesis in rats. Nature 315: 382–385PubMedCrossRefGoogle Scholar
  131. Ziegler M, Ziegler B, Hehmke B, Dietz H, Hildmann W, Kauert C (1984) Autoimmune response directed to pancreatic ß cells in rats induced by combined treatment with low doses of streptozotocin and complete Freund’s adjuvant. Biomed Biochim Acta 43: 675–681PubMedGoogle Scholar
  132. Ziegler M, Teneberg S, Witt S, Ziegler B, Hehmke B, Kohnert KD, Egeberg J, Karlsson KA, Lernmark A (1988) Islet β-cytotoxic monoclonal antibody against glycolipids in experimental diabetes induced by low dose streptozotocin and Freund’s adjuvant. J Immunol 140: 4144–4150PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1990

Authors and Affiliations

  1. 1.Department of Structural and Cellular BiologyUniversity of South AlabamaMobileUSA
  2. 2.The Jackson LaboratoryBar HarborUSA

Personalised recommendations