Advertisement

Computer Simulation of Rotating Molecules in Condensed Phases

  • R. W. Gerling
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 45)

Abstract

The application of the Langevin-formalism for the study of rotating molecules is demonstrated with three examples:
  • The rotational motion of the NH4 tetrahedron in the molecular crystal NH4Cl.

  • A numerical solution of the nonlinear Langevin equation.

  • A simple model for translational-rotational coupling.

Keywords

Langevin Equation Friction Parameter Friction Term Stochastic Force Langevin Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R Langevin, Compt. Rend. 43, 530 (1908).Google Scholar
  2. 2.
    I.F. Silvera, Rev. Mod. Phys. 52, 393, (1980).CrossRefADSGoogle Scholar
  3. 3.
    T. Schneider and E. Stoll, Phys. Rev. B 17, 1302 (1978).CrossRefADSGoogle Scholar
  4. 4.
    G.E.P. Box and M.M. Muller, Ann. Math. Stat. 29, 610 (1958).CrossRefzbMATHGoogle Scholar
  5. 5.
    R.W. Gerling, Thesis, University of Erlangen, unpublished.Google Scholar
  6. 6.
    R.E.D. McClung, J. Chem. Phys. 73, 2435 (1980); 75, 5503 (1981).CrossRefADSMathSciNetGoogle Scholar
  7. 7.
    G. Levi, J.P. Marsault, F. Marsault-Hérail, and R.E.D. McClung, J. Chem Phys. 73, 2443 (1980).CrossRefADSGoogle Scholar
  8. 8.
    R.M. Levy, M. Karplus, and J.A. McCammon, Chem. Phys. Lett. 65, 4 (1979).CrossRefADSGoogle Scholar
  9. 9.
    R.W. Gerling and A. Hiiller, Z. Phys. B 40, 209 (1980).CrossRefADSGoogle Scholar
  10. 10.
    R.W. Gerling, Z. Phys. B 45, 39 (1981).CrossRefADSGoogle Scholar
  11. 11.
    R.W. Gerling and B. de Raedt, J. Chem. Phys. 77, 6263 (1982).CrossRefADSGoogle Scholar
  12. 12.
    R.W. Gerling and A. Hüller, J. Chem. Phys. 78, 446 (1983).CrossRefADSGoogle Scholar
  13. 13.
    D. Klotz and A. Hüller, Z. Phys. B 63, 69 (1986).CrossRefADSGoogle Scholar
  14. 14.
    A. Hüller and J.W. Kane, J. Chem. Phys. 61, 3594 (1974).CrossRefGoogle Scholar
  15. 15.
    C. Brot and I. Darmon, Mol. Phys. 21, 785 (1971).CrossRefADSGoogle Scholar
  16. 16.
    F. Hund, Z. Physik 51, 1 (1928); W.H. Furry, Phys. Rev. 107, 7 (1957).CrossRefADSGoogle Scholar
  17. 17.
    J.M. Töpler, D.R, Richter, and T. Springer, J. Chem. Phys. 69, 3170 (1978).CrossRefADSGoogle Scholar
  18. 18.
    N.G. van Kampen, Stochastic Processes in Physics and Chemistry, North Holland, Amsterdam (1981).zbMATHGoogle Scholar
  19. 19.
    R.W. Gerling, Z. Phys. B 55, 263 (1984).CrossRefADSGoogle Scholar
  20. 20.
    K. Ito, Proc. Imp. Acad. Tokyo 20, 519 (1944); Mem. Am. Mathem. Soc. 4, 51 (1951).CrossRefGoogle Scholar
  21. 21.
    R.L. Stratonovich, SIAM J. Control 4, 362 (1966).CrossRefMathSciNetGoogle Scholar
  22. 22.
    A. Ran and R.W. Gerling, preprint (1989).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • R. W. Gerling
    • 1
    • 2
  1. 1.Center for Simulational PhysicsUniversity of GeorgiaAthensUSA
  2. 2.Institut für Theoretische Physik I der Universität Erlangen-NürnbergErlangenFed. Rep. of Germany

Personalised recommendations