Advertisement

Mass Multifractality in Cluster Growth Models

  • T. Vicsek
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 45)

Abstract

It is demonstrated that clusters constructed by asymmetric recursion rules can be described in terms of mass multifractality. The set of generalized dimensions D q associated with the geometry of such objects is determined numerically for the growing asymmetric Cantor set using the box counting and the sand box methods. These approaches are not found equally efficient in evaluating the D q values. The direct determination of the f(α) spectrum corresponding to the singular distribution of mass in very large off-lattice diffusion-limited aggregates indicates the mass multifractality of these clusters as well.

Keywords

Singular Distribution Occupied Lattice Site Multifractal Distribution Exact Recursion Relation Cell Renormalization Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Mandelbrot, B. B., 1982 The Fractal Geometry of Nature ( Freeman, San Francisco )zbMATHGoogle Scholar
  2. [2]
    H. Takayasu, Fractals in Physical Sciences ( Asakura Shoten Publishers, Tokio, 1985 ) (in Japanese)Google Scholar
  3. [3]
    J. Feder Fractals ( Plenum Press, New York, 1988 )zbMATHGoogle Scholar
  4. [4]
    T. Vicsek Fractal Growth Phenomena (World Scientific, Singapore, 1989 jan.)Google Scholar
  5. [5]
    R. M. Brady and R. C. Ball, Nature 309, 225 (1984)CrossRefADSGoogle Scholar
  6. [6]
    M. Matsushita, M. Sano, Y. Hayakawa, H. Honjo and Y. Sawada, Phys. Rev. Lett. 53, 286 (1984)CrossRefADSGoogle Scholar
  7. [7]
    H. Honjo, S. Ohta and M. Matsushita, J. Phys. Soc. Japan 55, 2487 (1986)CrossRefADSGoogle Scholar
  8. [8]
    Gy. Radnoczy, T. Vicsek, L. M. Sander and D. Grier, Phys. Rev. A35, 4012 (1987)CrossRefADSGoogle Scholar
  9. [9]
    L. Niemeyer, L. Pietronero and H. J. Wiesmann, Phys. Rev. Lett. 52, 1033 (1984)CrossRefADSMathSciNetGoogle Scholar
  10. [10]
    Daccord, G., Nittmann, J., and Stanley, H. E., 1986 Phys.Rev. Lett. 56, 336CrossRefADSGoogle Scholar
  11. [11]
    Maloy, K. J., Feder J. and Jossang, J., 1985 Phys. Rev. Lett. 55, 2681CrossRefGoogle Scholar
  12. [12]
    H. Herrmann, Phys. Rep. 136, 154 (1986)CrossRefADSGoogle Scholar
  13. [13]
    P. Meakin, in Phase Transitions and Critical Phenomena edited by C. Domb and J. L. Lebowitz, Vol. 12, ( Academic Press, New York, 1987 ) p. 365Google Scholar
  14. [14]
    Stanley, H. E. and Ostrowsky, N., editors, Random Fluctuations and Pattern Growth ( Kluwer, Dordrecht, 1988 )Google Scholar
  15. [15]
    R. Jullien and R. Botet Aggregation and Fractal Aggregates ( World Scientific, Singapore, 1987 )zbMATHGoogle Scholar
  16. [16]
    T. C. Halsey, P. Meakin and I. Procaccia, Phys. Rev. Lett. 56, 854 (1986)CrossRefADSGoogle Scholar
  17. [17]
    C. Amitrano, A. Coniglio and F. di Liberto, Phys. Rev. Lett. 57, 1016 (1986)CrossRefADSGoogle Scholar
  18. [18]
    Y. Hayakawa, S. Sato and M. Matsushita, Phys. Rev. A36, 1963 (1987)CrossRefADSGoogle Scholar
  19. [19]
    J. Nittmann, H. E. Stanley, E. Torboul and G. Daccord, Phys. Rev. Lett. 58, 619 (1987)CrossRefADSGoogle Scholar
  20. [20]
    S. Ohta and H. Honjo, Phys. Rev. Lett. 60, 611 (1988)CrossRefADSGoogle Scholar
  21. [21]
    B. B. Mandelbrot, J. Fluid. Mech 62, 331 (1974)CrossRefzbMATHADSGoogle Scholar
  22. [22]
    U. Frisch and G. Parisi, in Turbulence and Predictability in Geophysical Fluid Dynamics and Climate Dynamics edited by M. Ghil, R. Benzi and G. Parisi (North- Holland, Amsterdam, 1985 )Google Scholar
  23. [23]
    T. C. Halsey, M. H. Jensen, L. P. Kadanoff, I. Procaccia and B. Shraiman, Phys. Rev. A33, 1141 (1986)CrossRefzbMATHADSMathSciNetGoogle Scholar
  24. [24]
    T. Tél, Z. Naturforsch, 43a, 1154, 1988MathSciNetGoogle Scholar
  25. [25]
    B. B. Mandelbrot in Random Fluctuations and Pattern Growth edited by H. E. Stanley and N. Ostrowsky ( Kluwer, Dordrecht, 1988 ) p. 333Google Scholar
  26. [26]
    T. A. Witten and L. M. Sander, Phys. Rev. Lett 47, 1400 (1981)CrossRefADSGoogle Scholar
  27. [27]
    F. Argoul, A. Arneodo, G. Grasseau and H. L. Swinney, Phys. Rev. Lett. 61, 2558 (1988)CrossRefADSGoogle Scholar
  28. [28]
    T. Nagatani, preprintGoogle Scholar
  29. [29]
    J. P. Hansen, J. L. McCauley, J. Muller and A. Skjeltorp, in Random Fluctuations and Pattern Growth edited by H. E. Stanley and N. Ostrowsky ( Kluwer, Dordrecht, 1988 ) p. 369Google Scholar
  30. [30]
    P. Meakin, private communicationGoogle Scholar
  31. [31]
    T. Tél and T. Vicsek, J. Phys. A20, L835 (1987)CrossRefGoogle Scholar
  32. [32]
    T. Vicsek, J. Phys. A16, L647 (1983)CrossRefADSMathSciNetGoogle Scholar
  33. [33]
    I. Procaccia and R. Zeitak, Phys. Rev. Lett. 60, 2511 (1988)CrossRefADSMathSciNetGoogle Scholar
  34. [34]
    P. Garik, R. Richter, J. Hautman and P. Ramanlal, Phys. Rev. A32, 3156 (1985)CrossRefADSMathSciNetGoogle Scholar
  35. [35]
    F. Family, D. Piatt and T. Vicsek, J. Phys. A20, L1177 (1987)CrossRefADSGoogle Scholar
  36. [36]
    T. Tél, A. Fülöp and T. Vicsek, preprintGoogle Scholar
  37. [37]
    A. Chhabra and R. V. Jensen, preprintGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • T. Vicsek
    • 1
    • 2
  1. 1.Department of PhysicsEmory UniversityAtlantaUSA
  2. 2.Institute for Technical PhysicsBudapestHungary

Personalised recommendations