Universal Reduction of Tc in Strong Coupling Superconductors due to Anderson/Kondo Impurities

  • M. Jarrel
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 45)


The first exact calculation of (∂Tc/∂c)c=0, the initial depression of the superconducting T c , due to a small concentration, c, of magnetic impurities is presented. N(0) (∂T c /∂c) c=0 can be expressed as the product of two functions —fο), and g(T K /T co ). I find that f decreases rapidly and monotonically with λο, indicating that magnetic impurities reduce T c most effectively in weak coupling superconductors. I also find that, in contrast to previous results, the maximum ∣ (∂T c /∂c)c=0 ∣ occurs when T co = T K , thus resolving a longstanding experimental puzzle.


Anderson Model Magnetic Impurity Weak Coupling Limit Single Impurity Monte Carlo Data 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    M.B. Maple, Magnetism: A Treatise on Modern Theory and Materials, ed. H. Suhl, (Academic Press, New York, 1973), Vol. V, p. 289–325.Google Scholar
  2. [2]
    H. B. Schüttler, M. Jarrell, and D. J. Scalapino, Phy. Rev. Lett. 58, 1147, (1987).CrossRefADSGoogle Scholar
  3. [3]
    H. B. Schüttler, M. Jarrell, and D. J. Scalapino, J. Low Temp. Phys. (1987).Google Scholar
  4. [4]
    W. Gey, and E. Umlauf, Z. Physik 242, 241 (1970).CrossRefADSGoogle Scholar
  5. [5]
    E. Müller-Hartmann, and J. Zittartz, Phys. Rev. Lett. 26, 428, (1970). 148Google Scholar
  6. [6]
    A.A. Abrikosov and L.P. Gorkov, J. Exp. i Theor. Phys. 39 (1960), 1781 [Soviet Phys.-JETP 12 (1961), 1243 ].Google Scholar
  7. [7]
    T. Matsuura, S. Ichinose, and Y. Nagaoka, Prog, of Theor. Phy. 57, 713 (1977).CrossRefADSGoogle Scholar
  8. [8]
    N.E. Bickers and G.E.Zwicknagl, Phys. Rev. B 36, 6746 (1987). This calculation was for the six-fold degenerate Anderson model, which may quantitatively effect the results.CrossRefADSGoogle Scholar
  9. [9]
    M.B. Maple, and K.S. Kim, Phys. Rev. Lett. 23, 118, (1969).CrossRefADSGoogle Scholar
  10. [10]
    S. Takayanagi, J. Low Temp. Phys. 16, 519, (1974).CrossRefADSGoogle Scholar
  11. [11]
    C.A. Luengo, J.G. Huber, M.B. Maple, and M. Roth, Phys. Rev. Lett. 32, 54 (1974).CrossRefADSGoogle Scholar
  12. [12]
    O. Peña and F Meunier, Sol. State Comm. 14, 1087 (1974)CrossRefADSGoogle Scholar
  13. [13]
    F. Meunier, S. Ortega, O. Peña, M. Roth, and B. Coqblin Sol. State Comm. 14, 1091 (1974).CrossRefADSGoogle Scholar
  14. [14]
    F.D. Haldane, J. Phys. C 11, 5015 (1978).CrossRefADSGoogle Scholar
  15. [15]
    V.Z. Kresin, Phys. Lett. A /bf 122, 434 (1987).CrossRefADSGoogle Scholar
  16. [16]
    H.R. Krishna-murthy, J.W. Wilkins, and K.G. Wilson, Phys. Rev. B 21, 1003, (1979).CrossRefADSGoogle Scholar
  17. [17]
    Гd is defined by \(\begin{array}{*{20}{c}} {{{\Gamma }_{d}}(iv,iv\prime ) = } \hfill & {\int_{0}^{\beta } {d{{\tau }_{1}} \cdots d{{\tau }_{4}}{{e}^{{[iv\prime ({{\tau }_{1}} - {{\tau }_{2}}) - iv({{\tau }_{3}} - {{\tau }_{4}})]}}}} } \hfill \\ {} \hfill & {\langle T{{d}_{ \uparrow }}({{\tau }_{1}}){{d}_{ \downarrow }}({{\tau }_{2}})d_{ \downarrow }^{\dag }({{\tau }_{4}})d_{ \uparrow }^{\dag }({{\tau }_{3}})\rangle } \hfill \\ \end{array}\) where dσ destroys a spin-σ fermion on the impurity site.Google Scholar
  18. [18]
    J.E. Hirsch, and R.M. Fye, Phys. Rev. Lett. 56, 2521, (1986).CrossRefADSGoogle Scholar
  19. [19]
    M. Jarrell, Phys. Rev. Lett. 61, 2612, (1988).CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • M. Jarrel
    • 1
  1. 1.The Ohio State UniversityColumbusUSA

Personalised recommendations