Skip to main content

Retrovirus Envelope Glycoproteins

  • Conference paper
Retroviruses

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 157))

Abstract

The envelope glycoprotein complex of replication competent retroviruses is comprised of two polypeptides, an external, glycosylated, hydrophilic polypeptide (SU) and a membrane-spanning protein (TM), that form a knob or knobbed spike on the surface of the virion. Both polypeptides are encoded in the env gene and are synthesized in the form of a polyprotein precursor that is proteolytically cleaved during its transport to the surface of the cell. While these proteins are not required for the assembly of enveloped virus particles, they do play a critical role in the virus replication cycle by recognizing and binding to specific receptors (SU) and by mediating the fusion of viral and cell membranes (TM): virus particles lacking envelope glycoproteins are thus noninfectious.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Acres RB, Conlon PJ, Mochizuki DY, Gallis B (1986) Rapid phosphorylation and modulation of the T4 antigen on cloned helper T cells induced by phorbol myristate acetate or antigen. J Biol Chem 261:16210–16214

    PubMed  CAS  Google Scholar 

  • Adachi A, Gendelman HE, Koenig S, Folks T, Willey R, Rabson A, Martin MA (1986) Production of acquired immunodeficiency syndrome-associated retrovirus in human and nonhuman cells transfected with an infectious molecular clone. J Virol 59: 284–291

    PubMed  CAS  Google Scholar 

  • Albert J, Bredberg U, Chiodi F, Bottiger B, Fenyo EM, Norrby E, Biberfeld G (1987) A new human retrovirus isolate of West African origin (SBL-6669) and its relationship to HTLV-IV, LAV-II, and HTLV-IIIB. Aids Res Hum Retroviruses 3: 3–10

    PubMed  CAS  Google Scholar 

  • Albritton LM, Tseng L, Scadden D, Cunningham JM (1989) A putative murine ecotropic retrovirus receptor gene encodes a multiple membrane-spanning protein and confers susceptibility to virus infection. Cell 57: 659–666

    PubMed  CAS  Google Scholar 

  • Alexander S, Elder JH (1984) Carbohydrate dramatically influences immune reactivity of antisera to viral glycoprotein antigens. Science 226: 1328–1330

    PubMed  CAS  Google Scholar 

  • Alizon M, Wain-Hobson S, Montagnier L, Sonigo P (1986) Genetic variability of the AIDS virus: nucleotide sequence analysis of two isolates from African patients. Cell 46: 63–74

    PubMed  CAS  Google Scholar 

  • Anderson KB, Nexo BA (1983) Entry of murine retrovirus into mouse fibroblasts. Virology 125: 85–98

    Google Scholar 

  • Arthur LO, Pyle SW, Nara PL, Bess JJ, Gonda MA, Kelliher JC, Gilden RV, Robey WG, Bolognesi DP, Gallo RC, Fischinger PJ (1987) Serological responses in chimpanzees inoculated with human immunodeficiency virus glycoprotein (gp120) subunit vaccine. Proc Natl Acad Sci USA 84: 8583–8587

    PubMed  CAS  Google Scholar 

  • Barin F, McLane MF, Allan JS, Lee TH, Groopman JE, Essex M (1985) Virus envelope protein of HTLV-III represents major target antigen for antibodies in AIDS patients. Science 228: 1094–1096

    PubMed  CAS  Google Scholar 

  • Barré-Sinoussi F, Chermann JC, Rey F, Nugeyre MT, Chamaret S, Gruest J, Dauguet C, Axler-Blin C, Brun-Vezinet F, Rouzioux C, Rozenbaum W, Montagnier L (1983) Isolation of a T-lymphocyte retrovirus from a patient at risk for acquired immune deficiency syndrome (AIDS). Science 220: 868–871

    PubMed  Google Scholar 

  • Bassin RH, Ruscetti S, Ali I, Haapala DK, Rein A (1982) Normal DBA/2 mouse cells synthesize a glycoprotein which interferes with MCF virus infection. Virology 123: 139–151

    PubMed  CAS  Google Scholar 

  • Bedigian HG, Johnson DA, Jenkins NA, Copeland NG, Evans R (1984) Spontaneous and induced leukemias of myeloid origin in recombinant inbred BXH mice. J Virol 51: 586–594

    PubMed  CAS  Google Scholar 

  • Bedinger P, Moriarty A, von Borstel R, Donovan NJ, Steimer KS, Littman DR (1988) Internalization of the human immunodeficiency virus does not require the cytoplasmic domain of CD4. Nature 334: 162–165

    PubMed  CAS  Google Scholar 

  • Berger EA, Fuerst TR, Moss B (1988) A soluble recombinant polypeptide comprising the aminoterminal half of the extracellular region of the CD4 molecule contains an active binding site for human immunodeficiency virus. Proc Natl Acad Sci USA 85: 2357–2361

    PubMed  CAS  Google Scholar 

  • Berger SA, Sanderson N, Bernstein A, Hankins WD (1985) Induction of the early stages of Friend erythroleukemia with helper free Friend spleen focus-forming virus. Proc Natl Acad Sci USA 82: 6913–6917

    PubMed  CAS  Google Scholar 

  • Berman PW, Groopman JE, Gregory T, Clapham PR, Weiss RA, Ferriani R, Riddle L, Shimasaki C, Lucas C, Lasky LA, Eichberg JW (1988a) Human immunodeficiency virus type 1 challenge of chimpanzees immunized with recombinant envelope glycoprotein gp120. Proc Natl Acad Sci USA 85: 5200–5204

    PubMed  CAS  Google Scholar 

  • Berman PW, Nunes WM, Haffar OK (1988b) Expression of membrane-associated and secreted variants of gp160 of human immunodeficiency virus type 1 in vitro and in continuous cell lines. J Virol 62: 3135–3142

    PubMed  CAS  Google Scholar 

  • Berzofsky JA, Bensussan A, Cease KB, Bourge JF, Cheynier R, Lurhuma Z, Salaun JJ, Gallo RC, Shearer GM, Zagury D (1988) Antigenic peptides recognized by T lymphocytes from AIDS viral envelope-immune humans. Nature 334: 706–708

    PubMed  CAS  Google Scholar 

  • Bestwick RK, Hankins WD, Kabat D (1985) Roles of helper and defective retroviral genomes in murine erythroleukemia: studies of spleen focus-forming virus in the absence of helper. J Virol 56: 660–664

    PubMed  CAS  Google Scholar 

  • Bilello JA, Pitts OM, Hoffman PM (1986) Characterization of a progressive neurodegenerative disease induced by a temperature-sensitive Moloney murine leukemia virus infection. J Virol 59: 234–241

    PubMed  CAS  Google Scholar 

  • Blough HA, Pauwels R, De CE, Cogniaux J, Sprecher GS, Thiry L (1986) Glycosylation inhibitors block the expression of LAV/HTLV-III (HIV) glycoproteins. Biochem Biophys Res Commun 141:33–38

    PubMed  CAS  Google Scholar 

  • Boettiger D, Love DN, Weiss RA (1975) Virus envelope markers in mammalian tropism of avian RNA tumor viruses. J Virol 15: 108–114

    PubMed  CAS  Google Scholar 

  • Bova CA, Manfredi JP, Swanstron R (1986) Env genes of avian retroviruses: nucleotide sequence and molecular recombinants define host range determinants. Virology 152: 343–354

    PubMed  CAS  Google Scholar 

  • Bova CA, Olsen JC, Swanstrom R (1988) The avian retrovirus env gene family: molecular analysis of host range and antigenic variants. J Virol 62: 75–83

    PubMed  CAS  Google Scholar 

  • Bradac J, Hunter E (1986) Polypeptides of Mason-Pfizer Monkey virus. II. Synthesis and processing of the env gene products. Virology 150: 491–502

    PubMed  CAS  Google Scholar 

  • Braun MJ, Clements JE, Gonda MA (1987) The visna virus genome: evidence for a hypervariable site in the env gene and sequence homology among lentivirus envelope proteins. J Virol 61: 4046–4054

    PubMed  CAS  Google Scholar 

  • Brown DW, Robinson HL (1988a) Influence of env and long terminal repeat sequences on the tissue tropism of avian leukosis viruses, J Virol 62: 4828–4831

    PubMed  CAS  Google Scholar 

  • Brown DW, Robinson HL (1988b) Role of RAV-0 genes in the permissive replication of subgroup E avian leukosis viruses on line 15Bevl CEF. Virology 162: 239–242

    PubMed  CAS  Google Scholar 

  • Brown DW, Blais BP, Robinson HL (1988) Long terminal repeat (LTR) sequences env, and a region near the 5″ LTR influence the pathogenic potential of recombinants between Rous-associated virus types 0 and 1. J Virol 62: 3431–3437

    PubMed  CAS  Google Scholar 

  • Buchhagen DL, Pederson FS, Crowther RL, Haseltine WA (1980) Most sequence difference between the genomes of the AKV virus and leukemogenic Gross A virus passaged in vitro are located near the 3′ terminus. Proc Natl Acad Sci USA 77: 4359–4363

    PubMed  CAS  Google Scholar 

  • Buckheit RW, Bolognesi DP, Weinhold KJ (1987) The effects of leukemosuppressive immunotherapy of bone marrow infectious cell centres in AKR mice. Virology 157: 387–396

    PubMed  CAS  Google Scholar 

  • Buller RS, Ahmed A, Portis JL (1987) Identification of two forms of an endogenous murine retroviral env gene linked to the Rmcf locus. J Virol 61: 29–34

    PubMed  CAS  Google Scholar 

  • Carpenter CR, Bose HR, Rubin AS (1977) Contact-mediated suppression of mitogen induced responsiveness by spleen cells in reticuloendotheliosis virus-induced tumorigenesis. Cell Immunol 33: 392–401

    PubMed  CAS  Google Scholar 

  • Carpenter CR, Kempf KE, Bose HR, Rubin AS (1987a) Characterization of the interaction of reticuloendotheliosis virus with the avian lymphoid system. Cell Immunol 39: 307–315

    Google Scholar 

  • Carpenter CR, Rubin AS, Bose Jr. HR (1978b) Suppression of the mitogen-stimulated blastogenic response during reticuloendotheliosis virus-induced tumorigenesis: investigations into the mechanism of action of the suppressor. J Immunol 120: 1313–1320

    PubMed  CAS  Google Scholar 

  • Carter JK, Smith RE (1984) Specificity of avian leukosis virus-induced hyperlipidemia. J Virol 50: 301–308

    PubMed  CAS  Google Scholar 

  • Carter JK, Proctor SJ, Smith RE (1983) Induction of angiosarcomas by ring-necked pheasant virus. Infect Immun 40: 310–319

    PubMed  CAS  Google Scholar 

  • Chakrabarti L, Guyader M, Alizon M, Daniel MD, Desrosiers RC, Tiollais P, Sonigo P (1987) Sequence of simian immunodeficiency virus from macaque and its relationship to other human and simian retroviruses. Nature 328: 543–547

    PubMed  CAS  Google Scholar 

  • Chanh TC, Dreesman GR, Kanda P, Linette GP, Sparrow JT, Ho DD, Kennedy RC (1986) Induction of anti-HIV neutralizing antibodies by synthetic peptides. EMBO J 5: 3065–3071

    PubMed  CAS  Google Scholar 

  • Chattopadhyay SK, Cloyd MW, Linemeyer DR, Lander MR, Rands E, Lowy DR (1982) Cellular origin and role of mink cell focus-forming viruses in murine thymic lymphomas. Nature 295: 25–31

    PubMed  CAS  Google Scholar 

  • Chattopadhyay SK, Baroudy BM, Holmes KL, Fredrickson TN, Lander MR, Morse HC III, Hartley JW (1989) Biologic and molecular genetic characteristics of a unique MCF virus that is highly leukemogenic in ecotropic virus-negative mice. Virology 168: 90–100

    PubMed  CAS  Google Scholar 

  • Cheevers WP, McGuire TC (1985) Equine infectious anemia virus. Immunopathogenesis and persistence. Rev Infect Dis 7: 83–88

    PubMed  CAS  Google Scholar 

  • Cheevers WP, McGuire TC (1988) The lentiviruses: Maedi/visna, caprine arthritis-encephalitis, and equine infectious anemia. Adv Virus Res 34: 189–215

    PubMed  CAS  Google Scholar 

  • Cheevers WP, Stem TA, Knowles DP, McGuire TC (1988) Precursor polypeptides of caprine arthritis-encephalities lentivirus structural proteins. J Gen Virol 69: 675–681

    PubMed  CAS  Google Scholar 

  • Chen ISY, McLaughlin J, Golde DW (1984) Long terminal repeats of human T-cell leukemia virus II genome determine target cell specificity. Nature 309: 277–279

    Google Scholar 

  • Chesebro B, Wehrly K (1985) Different murine cell lines manifest unique patterns of interference to superinfection by murine leukemia viruses. Virology 141: 119–129

    PubMed  CAS  Google Scholar 

  • Chesebro B, Portis JL, Wehrly K, Nishio J (1983) Effect of murine host genotype on MCF virus expression, latency, and leukemia cell type of leukemias induced by Friend murine leukemia helper virus. Virology 128: 221–233

    PubMed  CAS  Google Scholar 

  • Chesebro B, Wehrly K, Nishio J, Evans L (1984) Leukemia induction by a new strain of Friend mink cell focus-inducing virus: synergistic effect of Friend ecotropic murine leukemia virus. J Virol 51: 63–70

    PubMed  CAS  Google Scholar 

  • Chopra HC, Mason MM (1970) A new virus in a spontaneous mammary tumor of a rhesus monkey. Cancer Res 30: 2081–2086

    PubMed  CAS  Google Scholar 

  • Chung S-W, Wolff L, Ruscetti S (1987) Sequences responsible for the altered erythropoietin responsiveness in spleen focus-forming virus strain SFFVp-infected cells are localized to a 678-base-pair region at the 3′ end of the envelope gene. J Virol 61: 1661–1664

    PubMed  CAS  Google Scholar 

  • Cianciolo GJ, Kipnis RJ, Synderman R (1984) Similarity between p15E of a murine and feline leukemia virus and p21 of HTLV. Nature 311: 515

    PubMed  CAS  Google Scholar 

  • Cianciolo GJ, Copeland TD, Oroszlan S, Synderman R. (1985) Inhibition of lymphocyte proliferation by a synthetic peptide homologous to retroviral envelope proteins. Science 230: 453–455

    PubMed  CAS  Google Scholar 

  • Clapham P, Nagy K, Cheinsong-Popov R, Weiss RA (1983) Productive infection and cell free transmission of human T-cell leukemia virus in a non-lymphoid cell line. Science 222: 1125–1127

    PubMed  CAS  Google Scholar 

  • Clapham P, Nagy K, Weiss RA (1984) Pseudotypes of human T-cell leukemia virus types 1 and 2: Neutralization by patients’ sera. Proc Natl Acad Sci USA 81: 2886–2889

    PubMed  CAS  Google Scholar 

  • Clavel F, Guetard D, Brun-Vezinet F, Chamaret S, Rey MA, Santos-Ferreira MO, Laurent AG, Dauguet C, Katlama C, Rouzioux C, Klatzmann D, Champalimaud JL, Montagnier L (1986a) Isolation of a new human retrovirus from West African patients with AIDS. Science 233: 343–346

    PubMed  CAS  Google Scholar 

  • Clavel F, Guyader M, Guetard D, Salle M, Montagnier L, Alizon M (1986b) Molecular cloning and polymorphism of the human immune deficiency virus type 2. Nature 324: 691–695

    PubMed  CAS  Google Scholar 

  • Clavel F, Mansinho K, Chamaret S, Guetard D, Favier V, Nina J, Santos FM, Champalimaud JL, Montagnier L (1987) Human immunodeficiency virus type 2 infection associated with AIDS in West Africa. N Engl J Med 316: 1180–1185

    PubMed  CAS  Google Scholar 

  • Clayton LK, Hussey RE, Steinbrich R, Ramachandran H, Husain Y, Reinherz EL (1988) Substitution of murine for human CD4 residues identifies amino acids critical for HIV-gp120 binding. Nature 335: 363–366

    PubMed  CAS  Google Scholar 

  • Clements JE, Pederson FS, Narayan O, Haseltine WS (1980) Genomic changes associated with antigenic variation of visna virus during persistent infection. Proc Natl Acad Sci USA 77: 4454–4458

    PubMed  CAS  Google Scholar 

  • Clements JE, D’Antonio N, Narayan O (1982) Genomic changes associated with antigenic variation of visna virus. II. Common nucleotide sequence changes detected in variants from independent isolations. J Mol Biol 158: 415–434

    PubMed  CAS  Google Scholar 

  • Cloyd MW (1983) Characterization of target cells for MCF viruses in AKR mice. Cell 32: 217–225

    PubMed  CAS  Google Scholar 

  • Cloyd MW, Chattopadhyay SK (1986) A new class of retrovirus present in many murine leukemia systems. Virology 151: 31–40

    PubMed  CAS  Google Scholar 

  • Cloyd MW, Hartley JW, Rowe WP (1980) Lymphomagenicity of recombinant mink cell focus-inducing murine leukemia viruses. J Exp Med 151: 542–552

    PubMed  CAS  Google Scholar 

  • Cloyd MW, Hartley JW, Rowe WP (1981) Genetic study of lymphoma induction by AKR mink cell focus-inducing virus in AKR x NFS crosses. J Exp Med 154: 450–458

    PubMed  CAS  Google Scholar 

  • Cloyd MW, Thompson MM, Hartley JW (1985) Host range of mink cell focus-inducing viruses. Virology 140: 239–248

    PubMed  CAS  Google Scholar 

  • Coffin JM (1979) Structure, replication, and recombination of retrovirus genomes: some unifying hypotheses. J Gen Virol 42: 1–26

    PubMed  CAS  Google Scholar 

  • Coffin J (1984) Endogenous viruses. In: Weiss R, Teich N, Varmus H, Coffin J (eds) Molecular biology of tumor viruses: RNA tumor viruses 2 edn. Cold Spring Harbor Laboratory, Cold Spring Harbor, p 1109

    Google Scholar 

  • Coffin JM, Champion M, Chabot F (1978) Nucleotide sequence relationships between the genomes of an endogenous and an exogenous avian tumor virus. J Virol 28: 972–991

    PubMed  CAS  Google Scholar 

  • Corcoran LM, Adams JM, Dunn AR, Cory S (1984) Murine T lymphomas in which the cellular myc oncogene has been activated by retroviral insertion. Cell 37: 113–122

    PubMed  CAS  Google Scholar 

  • Cork LC, Hadlow WJ, Crawford TB, Gorham JR, Piper RC (1974) Infectious leukoencephalomyelitis of young goats. J Infect Dis 129: 134–141

    PubMed  CAS  Google Scholar 

  • Crawford S, Goff SP (1985) A deletion mutation in the 5′ part of the pol gene of Moloney murine leukemia virus blocks proteolytic processing of the gag and pol polyproteins. J Virol 53: 899–907

    PubMed  CAS  Google Scholar 

  • Crittenden LB (1968) Observations on the nature of a genetic cellular resistance to avian tumor viruses. JNCI 41: 145–153

    PubMed  CAS  Google Scholar 

  • Crittenden LB, Motta JV (1975) The role of the tub locus in genetic resistance to RSV (RAV-O). Virology 67: 327–334

    PubMed  CAS  Google Scholar 

  • Crittenden LB, Fadly AM, Smith EJ (1982) Effect of endogenous leukosis virus genes on response to infection with avian leukosis and reticuloendotheliosis viruses. Avian Dis 26: 279–294

    PubMed  CAS  Google Scholar 

  • Crittenden LB, Smith EJ, Fadly AM (1984) Influence of endogenous viral (ev) gene expression and strain of exogenous avian leukosis virus (ALV) on mortality and ALV infection and shedding in chickens. Avian Dis 28: 1037–1056

    PubMed  CAS  Google Scholar 

  • Crittenden LB, McMahon S, Halpern MS, Fadly AM (1987) Embryonic infection with the endogenous avian leukosis virus Rous-associated virus-0 alters responses to exogenous avian leukosis virus infection. J Virol 61: 722–725

    PubMed  CAS  Google Scholar 

  • Cuypers HT, Selten G, Quint W, Zijlstra M, Maandag ER, Boelens W, van Wezenbeek P, Melief C, Berns A (1984) Murine leukemia virus-induced T-cell lymphomagenesis: integration of proviruses in a distinct chromosomal region. Cell 37: 141–150.

    PubMed  CAS  Google Scholar 

  • Dalgleish AG, Beverley PC, Clapham PR, Crawford DH, Greaves MF, Weiss RA (1984) The CD4 (T4) antigen is an essential component of the receptor for the AIDS retrovirus. Nature 312: 763–767

    PubMed  CAS  Google Scholar 

  • Daniel MD, King NW, Letvin NL, Hunt RD, Sehgal PK, Desrosiers RC (1984) A new type D retrovirus isolated from the macaques with an immunodeficiency syndrome. Science 223: 602–605

    PubMed  CAS  Google Scholar 

  • Daniel MD, Letvin NL, King NW, Kannagi M, Sehgal PK, Hunt RD, Kanki PJ, Essex M, Desrosiers RC (1985) Isolation of T cell tropic HTLV-III-like retrovirus from macaques. Science 228: 1201–1204

    PubMed  CAS  Google Scholar 

  • Davis GL, Hunter E (1987) A charged amino acid substitution within the transmembrane anchor of the Rous Sarcoma virus envelope glycoprotein affects surface expression but not intracellular transport. J Cell Biol 105: 1191–1203

    PubMed  CAS  Google Scholar 

  • Davis BR, Brightman BK, Chandy KG, Fan H (1987) Characterization of a preleukemic state induced by Moloney murine leukemia virus: Evidence for two infection events during leukemogenesis. PNAS USA 84: 4875–4879

    PubMed  CAS  Google Scholar 

  • De Boer GF (1975) Zwoegerziekte virus, the causative agent for progressive interstitial pneumonia (maedi) and meningo-leucoencephalitis (visna) in sheep. Res Vet Sci 18: 15–25

    PubMed  Google Scholar 

  • Deen KC, McDougal JS, Inacker R, Folena WG, Arthos J, Rosenberg J, Maddon PJ, Axel R, Sweet RW (1988) A soluble form of CD4 (T4) protein inhibits AIDS virus infection. Nature 331: 82–84

    PubMed  CAS  Google Scholar 

  • DeLarco J, Todaro GJ (1976) Membrane receptors for murine leukemia viruses: characterization using the purified viral envelope glycoprotein. Cell 8: 365–371

    PubMed  CAS  Google Scholar 

  • DesGroseillers L, Jolicoeur P (1984) Mapping the viral sequences conferring leukemogenicity and disease specificity in Moloney and amphotropic murine leukemia viruses. J Virol 52: 448–456

    PubMed  CAS  Google Scholar 

  • DesGroseillers L, Barrette M, Jolicoeur P (1984) Physical mapping of the paralysis-inducing determinant of a wild mouse ecotropic neurotropic retrovirus. J Virol 52: 356–363

    PubMed  CAS  Google Scholar 

  • Desrosiers RC (1988) Simian immunodeficiency viruses. Annu Rev Microbiol 42: 607–625

    PubMed  CAS  Google Scholar 

  • Desrosiers RC, Wyand MS, Kodama T, Ringler DJ, Arthur LO, Sehgal PK, Letvin NL, King NW, Daniel MD (1989) Vaccine protection against simian immunodeficiency virus infection. Proc Natl Acad Sci USA 86:6353–6357

    PubMed  CAS  Google Scholar 

  • Dickson C, Eisenman R. Fan H. Hunter E, Teich N (1984a) Protein biosynthesis and assembly. Weiss R et al. (eds) Molecular biology of tumor viruses 2 edn. Cold Spring Harbor Laboratory, Cold Spring Harbor, pp 513–648

    Google Scholar 

  • Dickson C, Peters G, Smith R, Brookes S (1984b) Tumorigenesis by mouse mammary tumor virus may involve provirus integration in a specific region of the mouse chromosome and activation of a cellular gene. Cancer Cells 2: 195–203

    CAS  Google Scholar 

  • Doms RW, Helenius A (1986) Quaternary structure of influenza virus hemagglutinin after acid treatment. J Virol 60: 833–839

    PubMed  CAS  Google Scholar 

  • Donahue PR, Hoover EA, Beltz GA, Riedel N, Hirsch VM, Overbaugh J, Mullins JI (1988) Strong sequence conservation among horizontally transmissible, minimally pathogenic feline leukemia viruses. J Virol 62: 722–731

    PubMed  CAS  Google Scholar 

  • Dorner AJ, Coffin JM (1986) Determinants for receptor interaction and cell killing on the avian retrovirus glycoprotein gp85. Cell 45: 365–374

    PubMed  CAS  Google Scholar 

  • Dorner AJ, Stoye JP, Coffin JM (1985) Molecular basis of host range variation in avian retroviruses. J Virol 53: 32–39

    PubMed  CAS  Google Scholar 

  • Dresler S, Ruta M, Murray MJ, Kabat D (1979) Glycoprotein encoded by the Friend spleen focus-forming virus. J Virol 30: 564–575

    PubMed  CAS  Google Scholar 

  • Dubay J, Kong L, Kappes J, Shaw G, Hahn B, Hunter E (1988) Mutational analysis of the gp41 glycoprotein Abst IV int Conf on AIDS, Stockholm, Sweden p 1517

    Google Scholar 

  • Dubois Dalcq M, Narayan O, Griffin DE (1979) Cell surface changes associated with maturation of visna virus in antibody-treated cell cultures. Virology 92: 353–366

    PubMed  CAS  Google Scholar 

  • Duff RG, Vogt PK (1969) Characteristics of two new avian tumor virus subgroup. Virology 39: 18–30

    PubMed  CAS  Google Scholar 

  • Durbin RK, Manning JS (1984) Coordination of cleavage of gag and env gene products of murine leukemia virus: implication regarding the mechanism of processing. Virology 134: 368–374

    PubMed  CAS  Google Scholar 

  • Earl PL, Moss B, Morrison RP, Wehrly K, Nishio J, Chesebro B (1986) T-lymphocyte priming and protection against Friend leukemia by vaccinia-retrovirus env gene recombinant. Science 234:728–731

    PubMed  CAS  Google Scholar 

  • Einfeld D, Hunter E (1988) Oligomeric structure of a prototype retrovirus glycoprotein. Proc Natl Acad Sci USA 85: 8688–8692

    PubMed  CAS  Google Scholar 

  • Einfeld D, Hunter E (1989) Oligomeric structure of retroviral envelope glycoproteins. In: Air GM, Laver G (eds) Use of X-ray crystallography in the design of antiviral agents. Academic, New York pp 00–00

    Google Scholar 

  • Elder JH, McGee JS, Alexander S (1986) Carbohydrate side chains of Rauscher leukemia virus envelope glycoproteins are not required to elicit a neutralizing antibody response. J Virol 57: 340–342

    PubMed  CAS  Google Scholar 

  • Ellis TM, Wilcox GE, Robinson WF (1987) Antigenic variation of caprine arthritis- encephalitics virus during persistent infection of goats. J Gen Virol 63: 3145–3152

    Google Scholar 

  • Evans LH (1986) Characterization of polytropic MuLVs from three-week-old AKR/J mice. Virology 153: 122–136

    PubMed  CAS  Google Scholar 

  • Evans LH, Cloyd MW (1984) Generation of mink cell focus-forming viruses by friend murine leukemia virus: recombination with specific endogenous proviral sequences. J Virol 49: 772–781

    PubMed  CAS  Google Scholar 

  • Evans LH, Cloyd MW (1985) Friend and Moloney murine leukemia viruses specifically recombine with different endogenous sequences to generate mink cell focus-forming viruses. Proc Natl Acad Sci USA 82: 459–463

    PubMed  CAS  Google Scholar 

  • Evans LH, Malik FG (1987) Class II polytropic murine leukemia viruses (MuLVs) of AKR/J mice: possible role in the generation of class I oncogenic polytropic MuLVs. J Virol 61: 1882–1892

    PubMed  CAS  Google Scholar 

  • Famulari NG (1983) Murine leukemia viruses with recombinant env genes: a discussion of their role in leukemogenesis. Curr Top Microbiol Immunol 103: 75–108

    PubMed  CAS  Google Scholar 

  • Famulari NG, Cieplensky D (1984) A time-crouse study of MuLV env gene expression in the AKR thymus: qualitative and quantitative analysis of ecotropic and recombinant virus gene products. Virology 132: 282–291

    PubMed  CAS  Google Scholar 

  • Fauci A (1988) The human immunodeficiency virus: infectivity and mechanisms of pathogenesis. Science 239: 617

    PubMed  CAS  Google Scholar 

  • Fine D, Schochetman G (1978) Type D primate retroviruses: a review. Cancer Res 38: 3123–3139

    PubMed  CAS  Google Scholar 

  • Fine DL, Landon JC, Pienta RJ, Kubicek MT, Valerio MJ, Loeb WF, Chopra HC (1975) Responses of infant rhesus monkeys to inoculation with Mason-Pfizer monkey virus materials. JNCI 54: 651–658

    PubMed  CAS  Google Scholar 

  • Fisher AG, Collalti E, Ratner L, Gallo RC, Wong-Staal F (1985) A molecular clone of HTLV-III with biological activity. Nature 316: 262–265

    PubMed  CAS  Google Scholar 

  • Fisher AG, Ratner L, Mitsuya H, Marselle LM, Harper ME, Broder S, Gallo RC, Wong-Staal F (1986) Infectious mutants of HTLV-III with changes in the 3′ region and markedly reduced cytopathic effects. Science 233: 655–659

    PubMed  CAS  Google Scholar 

  • Fisher RA, Bertonis JM, Meier W, Johnson VA, Vostopoulos DS, Liu T, Tizard R, Walker BD, Hirsch MS, Schooley RT, Flavell RA (1988) HIV infection is blocked in vitro by recombinant soluble CD4. Nature 331: 76–78

    PubMed  CAS  Google Scholar 

  • Forrest D, Onions D, Lees G, Neil JC (1987) Altered structure and expression of c-myc in feline T-cell tumours. Virology 158: 194–205

    PubMed  CAS  Google Scholar 

  • Friedman-Kein AE, Laubenstein LJ, Rubinstein P, Buimovici-Klein E, Marmor M, Stahl R, Spigland I, Kim KS, Zolla-Pazner S (1982) Disseminated Kaposi’s sarcoma in homosexual men. Ann Intern Med 96: 693–700

    Google Scholar 

  • Gallaher WR (1987) Detection of a fusion peptide sequence in the transmembrane protein of human immunodeficiency virus. Cell 50: 327–328

    PubMed  CAS  Google Scholar 

  • Gallaher WR, Ball JM, Garry RF, Griffin MC, Montelaro RC (1989) A general model for the transmembrane proteins of HIV and other retroviruses. AIDS Res Hum Retroviruses 5: 431–440

    PubMed  CAS  Google Scholar 

  • Gallione CJ, Rose JK (1983) Nucleotide sequence of a cDNA clone encoding the entire glycoprotein from the New Jersey serotype of vesicular stomatitis virus. J Virol 46: 162–169

    PubMed  CAS  Google Scholar 

  • Gallo RC, Salahuddin SZ, Popovic M, Shearer GM, Kaplan M, Haynes BF, Palker TJ, Redfield R, Oleske J, Safai B, White G, Foster P, Markham PD (1984) Frequent detection and isolation of cytopathic retroviruses (HTLV-III) from patients with AIDS and at risk for AIDS. Science 224: 500–503

    PubMed  CAS  Google Scholar 

  • Gardner MB (1978) Type-C viruses of wild mice: characterization and natural history of amphotropic, ecotropic and xenotropic murine leukemia viruses. Curr Top Microbiol Immunol 79: 215–239

    PubMed  CAS  Google Scholar 

  • Gardner MB (1985) Retroviral spongiform polioencephalomyelopathy. Rev Infect Dis 7: 99–110

    PubMed  CAS  Google Scholar 

  • Garry RF, Gottlieb AA, Zuckerman KP, Pace JR, Frank TW, Bostick DA (1988) Cell surface effects of human immunodeficiency virus. Biosci Rep 8: 35–48

    PubMed  CAS  Google Scholar 

  • Gartner S, Markovits P, Markovitz DM, Kaplan MH, Gallo RC, Popovic M (1986) The role of mononuclear phagocytes in HTLV-HI/LAV infection. Science 233: 215–219

    PubMed  CAS  Google Scholar 

  • Gazdar AF, Oie H, Lalley P, Moss WW, Minna JD (1977) Identification of mouse chromosomes required for murine leukemia virus replication. Cell 11: 949–956

    PubMed  CAS  Google Scholar 

  • Gebhardt A, Bosch JV, Ziemiecki A, Friis RR (1984) Rous srcoma virus pl9 and gp35 can be chemically crosslinked to high molecular weight complexes: an insight into viral association. J Mol Biol 174: 297–317

    PubMed  CAS  Google Scholar 

  • Gelderblom HR, Hausmann EH, Ozel M, Pauli G, Koch MA (1987) Fine structure of human immunodeficiency virus (HIV) and immunolocalization of structural proteins. Virology 156: 171–176

    PubMed  CAS  Google Scholar 

  • Gessain A, Barin F, Vernant JC, Gout O, Maurs L, Calender A, De The G (1985) Antibodies to human T-lymphotropic virus type-1 in patients with tropical spastic paraparesis. Lancet II: 407–409

    Google Scholar 

  • Gething MJ, Bye J, Skehel J, Waterfield M (1980) Cloning and DNA sequence of double-stranded copies of haemagglutinin genes from H2 and H3 strains elucidates antigenic shift and drift in human influenza virus. Nature 287: 301–306

    PubMed  CAS  Google Scholar 

  • Gething M, McCammon K, Sambrook J (1986) Expression of wild-type and mutant forms of influenza hemagglutinin: the role of folding in intracellular transport. Cell 46: 939–950

    PubMed  CAS  Google Scholar 

  • Geyer H, Holschbach C, Hunsmann G, Schneider J (1988) Carbohydrates of human immunodeficiency virus. Structures of oligosaccharides linked to the envelope glycoprotein 120. J Biol Chem 263: 11760–11767

    PubMed  CAS  Google Scholar 

  • Gisselbrecht S, Pozo F, Debre P, Hurot MA, Lacombe MJ, Levy JP (1978) Genetic control of sensitivity to Moloney-virus-induced leukemias in mice. I. Demonstration of multigenic control. Int J Cancer 21: 626–634

    PubMed  CAS  Google Scholar 

  • Gnann Jr JW, Nelson JA, Oldstone MB (1987) Fine mapping of an immunodominant domain in the transmembrane glycoprotein of human immunodeficiency virus. J Virol 61: 2639–2641

    PubMed  CAS  Google Scholar 

  • Gonda MA, Braun MJ, Carter SG, Kost TA, Bess Jr. JW, Arthur LO, Van Der Maaten MJ (1987) Characterization and molecular cloning of a bovine lentivirus related to human immunodeficiency virus. Nature 330: 388–391

    PubMed  CAS  Google Scholar 

  • Gottlieb MS, Schroff R, Schanker HM, Weisman JD, Fan PT, Worlf RA, Saxon A (1981) Pneumocystis carinii pneumonia and mucosal candidiasis in previously healthy homosexual men. Evidence of a new acquired cellular immunodeficiency. N Engl J Med 305: 1425–1431

    PubMed  CAS  Google Scholar 

  • Goudsmit J, Debouck C, Meloen RH, Smit L, Bakker M, Asher DM, Wolff AV, Gibbs CJ, Gajdusek DC (1988a) Human immunodeficiency virus type 1 neutralization epitope with conserved architecture elicits early type-specific antibodies in experimentally infected chimpanzees. Proc Natl Acad Sci USA 85: 4478–4482

    PubMed  CAS  Google Scholar 

  • Goudsmit J, Thiriart C, Smit L, Bruck C, Gibbs CJ (1988b) Temporal development of cross-neutralization between HTLV-III B and HTLV-III RF in experimentally infected chimpanzees. Vaccine 6: 229–32

    PubMed  CAS  Google Scholar 

  • Green N, Hiai H, Elder JH, Schwartz RS, Khiroya RH, Thomas CY, Tsichlis PN, Coffin JM (1980) Expression leukemogenic recombinant viruses associated with a recessive gene in HRS/J mice. J Exp Med 152: 249–264

    PubMed  CAS  Google Scholar 

  • Gruters RA, Neefjes JJ, Tersmette M, de GR, Tulp A, Huisman HG, Miedema F, Ploegh HL (1987) Interference with HIV-induced syncytium formation and viral infectivity by inhibitors of trimming glucosidase. Nature 330: 74–77

    PubMed  CAS  Google Scholar 

  • Guyader M, Emerman M, Sonigo P, Clavel F, Montagnier L, Alizon M (1987) Genome organization and transactivation of the human immunodeficiency virus type 2. Nature 326: 662–669

    PubMed  CAS  Google Scholar 

  • Haase AT (1975) The slow infection caused by visna virus. Curr Top Microbiol Immunol 72: 101–156

    PubMed  CAS  Google Scholar 

  • Haase AT (1986) Pathogenesis of lentivirus infections. Nature 322: 130–136

    PubMed  CAS  Google Scholar 

  • Haase AT, Stowring L, Narayan O, Griffin D, Price DL (1977) The slow and persistent infection caused by visna virus. The role of lysogeny. Science 1954: 175

    Google Scholar 

  • Haffar OK, Dowbenko DJ, Berman PW (1988) Topogenic analysis of the human immunodeficiency virus type 1 envelope glycoprotein, gp 160, in microsomal membranes. J Cell Biol 107:1677–1687

    PubMed  CAS  Google Scholar 

  • Hahn BH, Gonda MA, Shaw GM, Popovic M, Hoxie JA, Gallo RC, Wong-Staal F (1985) Genomic diversity of the acquired immune deficiency syndrome virus HTLV-III: different viruses exhibit greatest divergence in their envelope genes. Proc Natl Acad Sci USA 82: 4813–4817

    PubMed  CAS  Google Scholar 

  • Hahn BH, Shaw GM, Taylor ME, Redfield RR, Markham PD, Salahuddin SZ, Wong-Staal F, Gallo RC, Parks ES, Parks WP (1986) Genetic variation in HTLV-III/LAV over time in patients with AIDS or at risk for AIDS. Science 232: 1548–1553

    PubMed  CAS  Google Scholar 

  • Halpern MS, Ewert DL, Flores LJ, Crittenden LB (1983) The influence of the ev 3 locus on the inductibility of serum antibody reactivity for envelope glycoprotein group-specific determinants. Virology 128: 502–504

    PubMed  CAS  Google Scholar 

  • Hanafusa T, Hanafusa H, Miyamoto T (1970) Recovery of a new virus from apparently normal cells by infection with avian tumor viruses. Proc Natl Acad Sci USA 67: 1797–1803

    PubMed  CAS  Google Scholar 

  • Hankins WD, Troxler D (1980) Polycythemia and anemia inducing erythroleukemia viruses exhibit differential erythroid transforming effects in vitro. Cell 22: 693–699

    PubMed  CAS  Google Scholar 

  • Hannink M, Donoghue DJ (1984) Requirement for a signal sequence in biological expression of the v-sis oncogene. Science 312: 1197–1199

    Google Scholar 

  • Hardwick JM, Shaw KES, Wills JW, Hunter E (1986) Amino-terminal deletion mutants of the Rous sarcoma virus glycoprotein do not block signal peptide cleavage but can block intracellular transport. J Cell Biol 103: 829–838

    PubMed  CAS  Google Scholar 

  • Harper ME, Marselle LM, Gallo RC, Wong-Staal F (1986) Detection of lymphocytes expressing human T-lymphotropci virus type III in lymph nodes and peripheral blood from infected individuals by in situ hybridization. Proc Natl Acad Sci USA 83: 772–776

    PubMed  CAS  Google Scholar 

  • Harter DH, Choppin PW (1967a) Cell-fusing activity of visna virus particles. Virology 31: 279–288

    PubMed  CAS  Google Scholar 

  • Harter DH, Choppin PW (1967b) Plaque assay of visna virus using a secondary cellular overlay as an indicator. Virology 31: 176–178

    PubMed  CAS  Google Scholar 

  • Harter DH, Hsu KC, Rose HM (1968) Multiplication of visna virus in bovine and porcine cell lines. Proc Soc Exp Biol Med 129: 295–300

    PubMed  CAS  Google Scholar 

  • Hartley JW, Rowe WP (1975) Clonal cell lines from a feral mouse embryo which lack host-range restriction for murine leukemia viruses. Virology 65: 138–134

    Google Scholar 

  • Hartley JW, Yetter RA, Morse HC III (1983) A mouse gene on chromosome 5 that restricts infectivity of mink cell focus-forming recombinant murine leukemia viruses. J Exp Med 158: 16–24

    PubMed  CAS  Google Scholar 

  • Hauser SL, Aubert C, Burks JS, Kerr C, Lyon-Caen O, de The G, Brahic M (1986) Analysis of human T-lymphotropic virus sequences in multiple sclerosis tissue. Nature 322: 176–177

    PubMed  CAS  Google Scholar 

  • Hayward WS, Hanafusa H (1975) Recombination between endogenous and exogenous RNA tumor virus genes as analyzed by nucleic acid hybridization. J Virol 15: 1367–1377

    PubMed  CAS  Google Scholar 

  • Herr W, Gilbert W (1983) Somatically acquired recombinant murine leukemia proviruses in thymic leukemias of AKR/J mice. J Virol 46: 70–82

    PubMed  CAS  Google Scholar 

  • Herr W, Gilbert W (1984) Free and integrated recombinant murine leukemia virus DNAs appear in preleukemic thymuses of AKR/J mice. J Virol 50: 155–162

    PubMed  CAS  Google Scholar 

  • Hikins J, van der Zeijst B, Buijs F, Kroezen V, Bleumink N, Hilgers J (1983) Identification of a cellular receptor for mouse mammary tumor virus and mapping of its gene to chromosome 16. J Virol 45: 140–147

    Google Scholar 

  • Hirsch V, Riedel N, Mullins JI (1987) The genome organization of STLV-3 is similar to that of the AIDS virus except for a truncated transmembrane protein. Cell 49: 307–319

    PubMed  CAS  Google Scholar 

  • Hirsch VM, Olmsted RA, Murphey-Corb M, Purcell RH, Johnson PR (1989) An African primate lentivirus (SIVsm) closely related to HIV-2. Nature 339: 389–392

    PubMed  CAS  Google Scholar 

  • Ho DD, Sarngadharan MG, Hirsch MS, Schooley RT, Rota TR, Kennedy RC, Chanh TC, Sato VL (1987) Human immunodeficiency virus neutralizing antibodies recognize several conserved domains on the envelope glycoproteins. J Virol 61: 2024–2028

    PubMed  CAS  Google Scholar 

  • Ho DD, Kaplan JC, Rackauskas IE, Gurney ME (1988) Second conserved domain of gp120 is important for HIV infectivity and antibody neutralization. Science 239: 1021–1023

    PubMed  CAS  Google Scholar 

  • Holland CA, Hartley JW, Rowe WP, Hopkins N (1985a) At least four viral genes contribute to the leukemogenicity of murine retrovirus MCF 247 in AKR mice. J Virol 53: 158–165

    PubMed  CAS  Google Scholar 

  • Holland CA, Wozney J, Chatis PA, Hopkins N, Hartley JW (1985b) Construction of recombinants between molecular clones of murine retrovirus MCF 247 and Akv: determinant of an in vitro host range property that maps in the long terminal repeat. J Virol 53: 152–157

    PubMed  CAS  Google Scholar 

  • Hoover EA, Kociba GJ, Hardy WD Jr, Yohn DS (1974) Erythroid hypoplasia in cats inoculated with feline leukemia virus. J Nat Cancer Inst 53: 1271–1276

    PubMed  CAS  Google Scholar 

  • Horoszewicz JS, Leong SS, Carter WA (1975) Friend leukemia: rapid development of erythropoietin-independent hematopoietic precursors. JNCI 54: 265–267

    PubMed  CAS  Google Scholar 

  • Hoshino H, Tanaker H, Miwa M, Okada H (1984) Human T-cell leukaemia virus is not lysed by human serum. Nature 310: 324–325

    PubMed  CAS  Google Scholar 

  • Hoxie JA, Alpers JD, Radkowski J, Huebner K, Haggarty BS, Cedarbaum AJ, Reed JC (1986) Alterations in T4 (CD4) protein and mRNA synthesis in cells infected with HIV. Science 234: 1123

    PubMed  CAS  Google Scholar 

  • Hu SL, Fultz PN, McClure HM, Eichberg JW, Thomas EK, Zarling J, Singhai MC, Kosowski SG, Swenson RB, Anderson DC, Todaro G (1987) Effect of immunization with a vaccinia-HIV env recombinant on HIV infection of chimpanzees. Nature 328: 721–723

    PubMed  CAS  Google Scholar 

  • Huebner RJ, Gilden RV, Toni R, Hill RW, Trimmer RW, Fish DC, Sass B (1976) Prevention of spontaneous leukemia in AKR mice by type-specific immunosuppression of endogenous ecotropic virogenes. Proc Natl Acad Sci USA 73: 4633–4635

    PubMed  CAS  Google Scholar 

  • Hunsmann G, Schneider J, Schulz A (1981) Immunoprevention of Friend virus-induced erythroleukemia by vaccination with viral envelope glycoprotein complexes. Virology 113: 602–612

    PubMed  CAS  Google Scholar 

  • Hunt LA, Wright SE, Etchinson JR, Summers DF (1979) Oligosaccharide chains of avian RNA tumor virus glycoproteins contain heterogeneous oligomannosyl cores. J Virol 29: 336–343

    PubMed  CAS  Google Scholar 

  • Hunter E (1988) Membrane insertion and transport of viral glycoproteins: a mutational analysis. In: Das RC, Robbin PW (ed) Protein transfer and organelle biogenesis. Academic, New York, pp 109–158

    Google Scholar 

  • Hunter E, Bhown AS, Bennett JC (1978) Amino-terminal amino acid sequence of the major structural polypeptides of avian retroviruses: sequence homology between reticuloendotheliosis virus p30 and p30s of mammalian retroviruses. Proc Natl Acad Sci USA 75: 2708–2712

    PubMed  CAS  Google Scholar 

  • Hunter E, Hill E, Hardwick M, Bhown A, Schwartz D, Tizard R (1983) Complete sequence of the Rous sarcoma virus env gene: identification of structural and functional regions of its product. J Virol 46: 920–936

    PubMed  CAS  Google Scholar 

  • Huso DL, Narayan O, Hart GW (1988) Sialic acids on the surface of caprine arthritis-encephalitis virus define the biological properties of the virus. J Virol 62: 1974–1980

    PubMed  CAS  Google Scholar 

  • Hussain KA, Issel CJ, Schnorr KL, Rwambo PM, Montelaro RC (1987) Antigenic analysis of equine infectious anemia virus (EIAV) variants by using monoclonal antibodies: epitopes of glycoprotein gp90 of EIAV stimulate neutralizing antibodies. J Virol 61: 2956–2961

    PubMed  CAS  Google Scholar 

  • Hussey RE, Richardson NE, Kowalski M, Brown NR, Chang HC, Siliciano RF, Dorfman T, Walker B, Sodroski J, Reinherz EL (1988) A soluble CD4 protein selectively inhibits HIV replication and syncytium formation. Nature 331: 78–81

    PubMed  CAS  Google Scholar 

  • Ikeda H, Laigret F, Martin MA, Repaske R (1985) Characterization of a molecularly cloned retroviral sequence associaued with FV-4 resistance. J Virol 55: 768–777

    PubMed  CAS  Google Scholar 

  • Ishimoto A, Hartley JW, Rowe WP (1977) Detection and quantitation of phenotypically mixed viruses: mixing of ecotropic and xenotropic murine leukemia viruses. Virology 81: 263–269

    PubMed  CAS  Google Scholar 

  • Ishimoto A, Adachi A, Sakai K, Yorifugi T, Tsuruta S (1981) Rapid emergence of mink cell focus-forming (MCF) virus in various mice infected with NB-tropic Friend virus. Virology 113: 644–655

    PubMed  CAS  Google Scholar 

  • Jameson BA, Rao PE, Kong LI, Hahn BH, Shaw GM, Hood LE, Kent SB (1988) Location and chemical synthesis of a binding site for HIV-1 on the CD4 protein. Science 240: 1335–1339

    PubMed  CAS  Google Scholar 

  • Jarrett O, Hardy WD, Golder MC, Hay D (1978). The frequency of occurrence of feline leukemia virus subgroups in cats. Int J Cancer 21: 334–337

    PubMed  CAS  Google Scholar 

  • Jarrett O, Golder MC, Toth S, Onions DE, Stewart MF (1984) Interaction between feline leukaemia virus subgroups in the pathogenesis of erythroid hypoplasia. Int J Cancer 34: 283–288

    PubMed  CAS  Google Scholar 

  • Jenkins NA, Copeland NG, Taylor BA, Lee BK (1982) Organization, distribution, and stability of endogenous ecotropic murine leukemia virus DNA sequences in chromosomes of mus musculus. J Virol 43: 26–36

    PubMed  CAS  Google Scholar 

  • Johnson PA, Rosner MR (1986) Characterization of Murine-Specific Leukemia Virus Receptor from L Cells. J Virol 58: 900–908

    PubMed  CAS  Google Scholar 

  • Joho RH, Billeter MA, Weissman C (1975) Mapping of biological functions on RNA of avian tumor viruses: location of regions required for transformation and determining host range. Proc Natl Acad Sci USA 72: 4772–5776

    PubMed  CAS  Google Scholar 

  • Jolicoeur P, DesGroseillers L (1985) Neurotropic Cas-BR-E murine leukemia virus harbors several determinants of leukemogenicity mapping in different regions of the genome. J Virol 56: 639–643

    PubMed  CAS  Google Scholar 

  • Jones KS, Ruscetti S, Lilly F (1988) Loss of pathogenicity of spleen focus-forming virus after pseudotyping with AKV. J Virol 62: 511–518

    PubMed  CAS  Google Scholar 

  • Kalyanaraman VS, Sarngadharan MG, Robert-Guroff M, Miyoshi I, Blayney D, Golde D, Gallo RC (1982) A new subtype of human T-cell leukemia virus (HTLV-II) associated with a T-cell variant of hairy cell leukemia. Science 218: 571–573

    PubMed  CAS  Google Scholar 

  • Kan NC, Baluda MA, Papas T (1985) Sites of recombination between the transforming gene of avian myeloblastosis virus and its helper virus. Virology 145: 323–329

    PubMed  CAS  Google Scholar 

  • Katoh I, Yoshinaka Y, Rein A, Shibuya M, Odaka T, Oroszlan S (1985) Murine leukemia virus maturation: protease region required for conversion from “immature” to “mature” core form and for virus infectivity. Virology 145: 280–292

    PubMed  CAS  Google Scholar 

  • Kawashima K, Ikeda H, Hartley JW, Stockert E, Rowe WP, Old LJ (1976) Changes in expression of murine leukemia virus antigens and production of xenotropic virus in the late preleukemic period in AKR mice. Proc Natl Acad Sci USA 73: 4680–4684

    PubMed  CAS  Google Scholar 

  • Kennedy RC, Eklund CM, Lopez C, Hadlow WJ (1968) Isolation of a virus from lungs of Montana sheep affected with progressive penumonia. Virology 35: 483–484

    PubMed  CAS  Google Scholar 

  • Kennedy-Stoskopf S, Narayan O (1986) Neutralizing antibodies to visna lentivirus: Mechanism of action and possible role in virus persistence. J Virol 59: 37–44

    PubMed  CAS  Google Scholar 

  • Khan AS, Laigret F, Rodi CP (1987) Expression of mink cell focus-forming murine leukemia virus-related transcripts in AKR mice. J Virol 61: 876–882

    PubMed  CAS  Google Scholar 

  • Klasse PJ, Pipkorn R, Blomberg J (1988) Presence of antibodies to a putatively immunosuppressive part of human immunodeficiency virus (HIV) envelope glycoprotein gp41 is strongly associated with health among HIV-positive subjects. Proc Natl Acad Sci USA 85: 5225–5229

    PubMed  CAS  Google Scholar 

  • Klatzmann D, Champagne E, Chamaret S, Gruest J, Guetard D, Hercend T, Gluckman JC, Montagnier L (1984) T-lymphocyte T4 molecule behaves as the receptor for human retrovirus LAV. Nature 312: 767–768

    PubMed  CAS  Google Scholar 

  • Klevjer-Anderson P, McGuire TC (1982) Neutralizing antibody response of rabbits and goats to caprine arthritis-encephalitis virus. Infect Immun 38: 455–461

    PubMed  CAS  Google Scholar 

  • Kobayashi K, Kono Y (1967) Propagation and titration of equine infectious anemia virus in horse leukocyte culture. Natl Inst Anim Health Q 7: 8–20

    CAS  Google Scholar 

  • Koch W, Zimmermann W, Oliff A, Friedrich R (1984) Molecular analysis of the envelope gene and long terminal repeat of Friend mink cell focus-inducing virus: implications for the functions of these sequences. J Virol 49: 828–840

    PubMed  CAS  Google Scholar 

  • Kong LI, Lee SW, Kappes JC, Parkin JS, Decker D, Hoxie JA, Hahn BH, Shaw GM (1988) West African HIV-2-related human retrovirus with attenuated cytopathicity. Science 240: 1525–1529

    PubMed  CAS  Google Scholar 

  • Kono Y, Kobayashi K, Fukunaga Y (1973) Antigenic drift of equine infectious anemia virus in chronically infected horses. Arch Gesamte Virusforsch 41: 1–40

    PubMed  CAS  Google Scholar 

  • Koprowski H, DeFreitas EC, Harper ME, Sandberg-Wollhaim M, Sheremata WA, Robert-Guroff M, Saxinger CW, Feinberg MB, Wong-Staal F, Gallo RC (1985) Multiple sclerosis and human T-cell lymphotropic retroviruses. Nature 318: 154–160

    PubMed  CAS  Google Scholar 

  • Kornfeld R, Kornfeld S (1985) Assembly of asparagine-linked oligo-saccharides. Annu Rev Biochem 54: 631–664

    PubMed  CAS  Google Scholar 

  • Kowalski M, Potz J, Basiripour L, Dorfman T, Goh WC, Terwilliger E, Dayton A, Rosen C, Haseltine W, Sodroski J (1987) Functional regions of the envelope glycoprotein of human immunodeficiency virus type 1. Science 237: 1351–1355

    PubMed  CAS  Google Scholar 

  • Koyanagi Y, Miles S, Mitsuyasu RT, Merrill JE, Vinters HV, Chen ISY (1987) Dual infection of the central nervous system by AIDS viruses with distinct cellular tropisms. Science 236: 819–822

    PubMed  CAS  Google Scholar 

  • Kozak CA (1983) Genetic mapping of a mouse chromosomal locus required for mink cell focus-forming virus replication. J Virol 48: 300–303

    PubMed  CAS  Google Scholar 

  • Kozak CA (1985) Susceptibility of wild mouse cells to exogenous infection with xenotropic leukemia viruses: control by a single dominant locus on chromosome 1. J Virol 55: 690–695

    PubMed  CAS  Google Scholar 

  • Kozak CA, O’Neill RR (1987) Diverse wild mouse origins of xenotropic, mink cell focus-forming, and two types of ecotropic proviral genes. J Virol 61: 3082–3088

    PubMed  CAS  Google Scholar 

  • Kozak CA, Gromet NJ, Ikeda H, Buckler CE (1984) A unique sequence related to the ecotropic murine leukemia virus is associated with the Fv-4 resistance gene. Proc Natl Acad Sci USA 81:834–837

    PubMed  CAS  Google Scholar 

  • Kreis TE, Lodish HF (1986) Oligomerization is essential for transport of Vesicular stomatitis virus glycoprotein to the cell surface. Cell 46: 929–937

    PubMed  CAS  Google Scholar 

  • Kritchbaum-Stenger K, Poiesz BJ, Keller P, Ehrlich G, Gavalchin J, Davis B, Moore J (1987) Specific adsorption of HTLV-1 to various target human and animal cells. Blood 70: 1303–1311

    Google Scholar 

  • Lai MMC, Rasheed S, Shimizu CS, Gardner MB (1982). Genomic characterization of a highly oncogenic env gene recombinant between amphotropic retrovirus of wild mouse and endogenous xenotropic virus of NIH Swiss mouse. Virology 117: 262–266

    PubMed  CAS  Google Scholar 

  • Laigret F, Repaske R, Boulukos K, Rabson AB, Khan AS (1988) Potential progenitor sequences of mink cell focus-forming (MCF) murine leukemia viruses: ecotropic, xenotropic, and MCF-related viral RNAs are detected concurrently in thymus tissues of AKR mice. J Virol 62: 376–386

    PubMed  CAS  Google Scholar 

  • Landau NR, Warton M, Littman DR (1988) The envelope glycoprotein of the human immunodeficiency virus binds to the immunoglobulin-like domian of CD4. Nature 334: 159–162

    PubMed  CAS  Google Scholar 

  • Lander MR, Chattopadhyay SK (1984) A Mus dunni cell line that lacks sequences closely related to endogenous murine leukemia viruses and can be infected by ecotropic, amphotropic, xenotropic, and mink cell focus-forming viruses. J Virol 52: 695–698

    PubMed  CAS  Google Scholar 

  • Lando Z, Sarin P, Megson M, Greene WC, Waldman TA, Gallo RC, Broder S (1983) Association of human T-cell leukemia/lymphoma virus with a Tac antigen marker for the human T-cell growth factor receptor. Nature 305: 733–766

    PubMed  CAS  Google Scholar 

  • Lanzavecchia A, Roosnek E, Gregory T, Berman P, Abrignani S (1988) T-cells can present antigens such as HIV gpl20 targeted to their own surface molecules. Nature 334: 530–532

    PubMed  CAS  Google Scholar 

  • Lasky LA, Groopman JE, Fennie CW, Benz PM, Capon DJ, Dowbenko DJ, Nakamura GR, Nunes WM, Renz ME, Berman PW (1986) Neutralization of the AIDS retrovirus by antibodies to a recombinant envelope glycoprotein. Science 233: 209–212

    PubMed  CAS  Google Scholar 

  • Lasky LA, Nakamura G, Smith DH, Fennie C, Shimasaki C, Patzer E, Berman P, Gregory T, Capon DJ (1987) Delineation of a region of the human immunodeficiency virus type 1 gp120 glycoprotein critical for interaction with the CD4 receptor. Cell 50: 975–985

    PubMed  CAS  Google Scholar 

  • Leamnson RN, Halpern MS (1976) Subunit structure of the glycoprotein complex of avian tumor virus. J Virol 18: 956–968

    PubMed  CAS  Google Scholar 

  • Leamnson RN, Shander MHM, Halpern MD (1977) A structural protein complex in Moloney leukemia virus. Virology 76: 437–439

    PubMed  CAS  Google Scholar 

  • Lee H, Swanson P, Shorty VS, Zack JA, Rosenblatt JD, Chen I S-Y (1989) High rate of HTLV-II infection in seropositive IV drug abusers in New Orleans. Science 244: 471–475

    PubMed  CAS  Google Scholar 

  • Levy LS, Gardner MB, Casey JW (1984a) Isolation of a feline leukaemia provirus containing the oncogene myc from a feline lymphosarcoma. Nature 308: 853–856

    PubMed  CAS  Google Scholar 

  • Levy JA, Hoffman AD, Kramer SM, Landis JA, Shimabukuro JM, Oshiro LS (1984b) Isolation of lymphocytopathic retroviruses from San Francisco patients with AIDS. Science 225: 840–842

    PubMed  CAS  Google Scholar 

  • Levy JA, Cheng MC, Dina D, Luciw PA (1986) AIDS retrovirus (ARV-2) clone replicates in transfected human and animal fibroblasts. Science 232: 998–1001

    PubMed  CAS  Google Scholar 

  • Li J-P, Bestwick RK, Machida C, Kabat D (1986) Role of a membrane glycoprotein in Friend virus erythroleukemia: nucleotide sequences of nonleukemogenic mutant and spontaneous revertant viruses. J Virol 57: 534–538

    PubMed  CAS  Google Scholar 

  • Li J-P, Bestwick RK, Spiro C, Kabat D (1987) The membrane glycoprotein of Friend spleen focus-forming virus: evidence that the cell surface component is required for pathogenesis and that it binds to a receptor. J Virol 61: 2782–2792

    PubMed  CAS  Google Scholar 

  • Li Y, Naidu Y, Fultz P, Daniel MD, Desrosiers RC (1989) An African primate lentivirus (SIVsm) closely related to HIV-2. Nature 339: 389–392

    Google Scholar 

  • Liao S, Axelrad AA (1975) Erythropoietin-independent erythroid colony formation in vitro by hemopoietic cells of mice infected with Friend virus. Int J Cancer 15: 467–482

    PubMed  CAS  Google Scholar 

  • Lifson J, Coutre S, Huang E, Engleman E (1986) Role of envelope glycoprotein carbohydrate in human immunodeficiency virus (HIV) infectivity and virus-induced cell fusion. J Exp Med 164: 2101–2106

    PubMed  CAS  Google Scholar 

  • Lifson JD, Feinberg MB, Reyes GR, Rabin L, Banapour B, Chakrabarti S, Moss B, Wong SF, Steimer KS, Engleman EG (1986) Induction of CD4-dependent cell fusion by the HTLV-III/LAV envelope glycoprotein. Nature 323: 725–728

    PubMed  CAS  Google Scholar 

  • Linemeyer DL, Menke JG, Ruscetti SK, Evans LH, Scolnick EM (1982) Envelope gene sequences which encode the gp52 protein of spleen focus-forming virus are required for the induction of erythroid cell proliferation. J Virol 43: 223–233

    PubMed  CAS  Google Scholar 

  • Linsley PS, Ledbetter JA, Kinney TE, Hu SL (1988) Effects of anti-gp120 monoclonal antibodies on CD4 receptor binding by the env protein of human immunodeficiency virus type 1. J Virol 62: 3695–3702

    PubMed  CAS  Google Scholar 

  • Lung ML, Hering C, Hartley JW, Rowe WP, Hopkins N (1980) Analysis of the genomes of mink cell focus-inducing murine type-C viruses: a progress report. Cold Spring Harbor Symp Quant Biol 44: 1269–1274

    PubMed  CAS  Google Scholar 

  • Lung ML, Hartley JW, Rowe WP, Hopkins NH (1983) Large RNase T-resistant oligonucleotides encoding p15E and the U3 region of the long terminal repeat distinguish two biological classes of mink cell focus-forming type C viruses of inbred mice. N Virol 45: 275–290

    CAS  Google Scholar 

  • Lutley R, Petursson G, Palsson PA, Georgsson G, Klein J, Nathanson N (1983) Antigenic drift in visna. Virus variation during long term infection of Islandic sheep. J Gen Virol 64: 1433–1440

    PubMed  Google Scholar 

  • Lyerly HK, Matthews TJ, Langlois AJ, Bolognesi DP, Weinhold KJ (1987) Human T-cell lymphotropic virus IIIB glycoprotein (gp120) bound to CD4 determinants on normal lymphocytes and expressed by infected cells serves as target for immune attack. Proc Natl Acad Sci USA 84: 4601–4605

    PubMed  CAS  Google Scholar 

  • Machida CA, Bestwick RK, Kabat D (1984) Reduced leukemogenicity caused by mutations in the membrane glycoprotein gene of Rauscher spleen focus-forming virus. J Virol 49: 394–402

    PubMed  CAS  Google Scholar 

  • Machida CA, Bestwick RK, Kabat D (1985) A weakly pathogenic Rauscher spleen focus-forming virus mutant that lacks the carboxyl-terminal membrane anchor of its envelope glycoprotein. J Virol 53: 990–993

    PubMed  CAS  Google Scholar 

  • Mackey L, Jarrett W, Jarrett O, Laird H (1975) Anemia associated with feline leukemia infection in cats. JNCI 54: 209–217

    PubMed  CAS  Google Scholar 

  • Maddon PJ, Littman DR, Godfrey M, Maddon DE, Chess L, Axel R (1985) The isolation and nucleotide sequence of a cDNA encoding the T-cell surface protein T4: a new member of the immunoglobulin gene family. Cell 42: 93–104

    PubMed  CAS  Google Scholar 

  • Maddon PJ, Dalgleish AG, McDougal JS, Clapham PR, Weiss RA, Axel R (1986) The T4 gene encodes the AIDS virus receptor and is expressed in the immune system and the brain. Cell 47: 333–348

    PubMed  CAS  Google Scholar 

  • Maddon PJ, McDougal JS, Clapham PR, Dalgleish AG, Jamal S, Weiss RA, Axel R (1988) HIV infection does not require endocytosis of its receptor, CD4. Cell 54: 865–874

    PubMed  CAS  Google Scholar 

  • Majors JE, Varmus HE (1983) Nucleotide sequencing of an apparent proviral copy of env mRNA defines determinants of expression of the mouse mammary tumor virus env gene. J Virol 47: 495–504

    PubMed  CAS  Google Scholar 

  • Malmquist WA, Barnett D, Becvar CS (1973) Production of equine infectious anemia antigen in a persistently infected cell line. Arch Gesamte Virusforsch 42: 361–370

    PubMed  CAS  Google Scholar 

  • Marx PA, Maul DH, Osborn KG, Lerche NW, Moody P, Lowenstine LJ, Henrickson RV, Arthur LO, Gilden RV, Gravell M, London WT, Sever JL, Levy JA, Munn RJ, Gardner MB (1984) Simian AIDS: isolation of a type D retrovirus and transmission of the disease.: Science 223: 1083–1086

    PubMed  CAS  Google Scholar 

  • Marx PA, Bryant ML, Osborn KG et al. (1985) Isolation of a new serotype of simian acquired immune deficiency syndrome type D retrovirus from Celebes black macaques (Macaca nigra) with immune deficiency and retroperitoneal fibromatosis. J Virol 56: 571–578

    PubMed  CAS  Google Scholar 

  • Marx PA, Pedersen NC, Lerche NW, Osborn KG, Lowenstine LJ, Lackner AA, Maul DH, Kwang HS, Kluge JD, Zaiss CP, Sharpe V, Spinner A, Gardner M (1986) Prevention of simian acquired immune deficiency syndrome with a formalin-inactivated type D retrovirus vaccine. J Virol 60: 431–435

    PubMed  CAS  Google Scholar 

  • Massey RJ, Arthur LO, Nowinski RC, Schochetman G (1980) Monoclonal antibodies identify individual determinants on mouse mammary tumor virus glycoprotein gp52 with group, class, or type specificity. J Virol 34: 635–643

    PubMed  CAS  Google Scholar 

  • Matsushita S, Robert GM, Rusche J, Koito A, Hattori T, Hoshino H, Javaherian K, Takatsuki K, Putney S (1988) Characterization of a human immunodeficiency virus neutralizing monoclonal antibody and mapping of the neutralizing epitope. J Virol 62: 2107–2114

    PubMed  CAS  Google Scholar 

  • Matthews TJ, Weinhold KJ, Lyerly HK, Langlois AJ, Wigzell H, Bolognesi DP (1987) Interaction between the human T-cell lymphotropic virus type IIIb envelope glycoprotein gp120 and the surface antigen CD4: role of carbohydrate in binding and cell fusion. Proc Natl Acad Sci USA 84: 5424–5428

    PubMed  CAS  Google Scholar 

  • Mayyasi SA, Moloney JB (1967) Induced resistance of mice to a lymphoid strain of leukemia virus. Cancer 20: 1124–1130

    PubMed  CAS  Google Scholar 

  • McAtee FJ, Portis JL (1985) Monoclonal antibodies specific for wild mouse neurotropic retrovirus: detection of comparable levels of virus replication in mouse strains susceptible and resistant to paralytic disease. J Virol 56: 1018–1022

    PubMed  CAS  Google Scholar 

  • McCarter JA, Ball JK, Frei JV (1977) Lower limb paralysis induced in mice by a temperature-sensitive mutant of Moloney leukemia virus. JNCI 59: 179–183

    PubMed  CAS  Google Scholar 

  • McClure MO, Sattentau QJ, Beverly PCL, Hearn JP, Fitzgerald AK, Zuckerman AJ, Weiss RA (1987) HIV infection of primate lymphocytes and conservation of the CD4 receptor. Nature 330: 487–489

    PubMed  CAS  Google Scholar 

  • McClure MO, Marsh M, Weiss RA (1988) Human immunodeficiency virus infection of CD4-bearing cells occurs by a pH-independent mechanism. EMBO J 7: 513–518

    PubMed  CAS  Google Scholar 

  • McClure MO, Sommerfelt M, Marsh M, Weiss RA (1990) On the pH-dependence of mammalian retroviral infection. Virology, in press

    Google Scholar 

  • McCune JM, Rabin LB, Feinberg MB, Lieberman M, Kosek JC, Reyes GR, Weissman IL (1988) Endoproteolytic cleavage of gp160 is required for the activation of human immunodeficiency virus. Cell 53: 55–67

    PubMed  CAS  Google Scholar 

  • McDougal JS, Mawie A, Cort SP, Nicholson JKA, Cross GD, Sheppler-Campbell JA, Hicks D, Sligh J (1985) Cellular tropism of the human retrovirus HTLV-III/LAV. I. Role of T-cell activation and expression of the T4 antigen. J Immunol 135: 3151–3162

    PubMed  CAS  Google Scholar 

  • McDougal JS, Kennedy MS, Sligh JM, Cort SP, Mawle A, Nicholson JK (1986a) Binding of HTLV-III/LAV to T4 + T-cells by a complex of the 110K viral protein and the T4 molecule. Science 231:382–385

    PubMed  CAS  Google Scholar 

  • McDougal JS, Nicholson JK, Cross GD, Cort SP, Kennedy MS, Mawle AC (1986b) Binding of the human retrovirus HTLV-III/LAV/ARV/HIV to the CD4 (T4) molecule: conformation dependence, epitope mapping, antibody inhibition, and potential for idiotypic mimicry. J Immunol 137: 2937–2944

    PubMed  CAS  Google Scholar 

  • McGuire TC, Norton LK, O’Rourke KI, Cheevers WP (1988) Antigenic variation of neutralization-sensitive epitopes of caprine arthritis-encephalitis lentivirus during persistent arthritis. J Virol 62: 3488–3492

    PubMed  CAS  Google Scholar 

  • Meyer DI (1985) Signal recognition particle SRP does not mediate a translational arrest of nascent secretory proteins in mammalian cell-free system. EMBO J 4: 2031–2033

    PubMed  CAS  Google Scholar 

  • Modrow S, Hahn BH, Shaw GM, Gallo RC, Wong SF, Wolf H (1987) Computer-assisted analysis of envelope protein sequences of seven human immunodeficiency virus isolates: prediction of antigenic epitopes in conserved and variable regions. J Virol 61: 570–578

    PubMed  CAS  Google Scholar 

  • Moldow CF, Reynolds FH Jr, Lake J, Lundberg K, Stephenson JR (1979) Avian sarcoma virus envelope glycoprotein (gp85) specifically binds chick embryo fibroblasts. Virology 97: 448–453

    PubMed  CAS  Google Scholar 

  • Montefiori DC, Robinson WJ, Mitchell WM (1988) Role of protein N-glycosylation in pathogenesis of human immunodeficiency virus type 1. Proc Natl Acad Sci USA 85: 9248–9252

    PubMed  CAS  Google Scholar 

  • Montelaro RC, Parekh B, Orrego A, Issel CJ (1984) Antigenic variation during persistent infection by equine infectious anemia virus, a retrovirus. J Biol Chem 259: 10539–10544

    PubMed  CAS  Google Scholar 

  • Moreau-Gachelin F, Tavitian A, Tambourin P (1988) Spi-1 is a putative oncogene in virally induced murine erythroleukemias. Nature 331: 277–280

    PubMed  CAS  Google Scholar 

  • Mucenski ML, Taylor BA, Jenkins NA, Copeland NG (1986) AKXD recombinant inbred strains: models for studying the molecular genetic basis of murine lymphomas. Mol Cell Biol 6: 4236–4243

    PubMed  CAS  Google Scholar 

  • Mucenski ML, Taylor BA, Copeland NG, Jenkins NA (1987) Characterization of somatically acquired ecotropic and mink cell focus-forming viruses in lymphomas of AKXD recombinant inbred mice. J Virol 61: 2929–2933

    PubMed  CAS  Google Scholar 

  • Mucenski ML, Taylor BA, Ihle JN, Hartley JW, Morse HC III, Jenkins NA, Copeland NG (1988) Identification of a common ecotropic viral integration site, Evi-1, in the DNA of AKXD murine myeloid tumors. Mol Cell Biol 8: 301–308

    PubMed  CAS  Google Scholar 

  • Mullins JI, Brody DS, Binari RC Jr, Cotter SM (1984) Viral transduction of c-myc gene in naturally occurring feline leukaemias. Nature 308: 856–858

    PubMed  CAS  Google Scholar 

  • Mullins J, Chen C, Hoover EA (1986) Disease-specific and tissue-specific production of unintegrated feline leukaemia virus variant DNA in feline AIDS. Nature 319: 333–336

    PubMed  CAS  Google Scholar 

  • Nagy K, Clapham P, Cheinsong-Popov R, Weiss RA (1983) Human T-cell leukemia virus type 1: Induction of syncytia and inhibition of patients’ sera. Int J Cancer 32: 321–328

    PubMed  CAS  Google Scholar 

  • Nagy K, Weiss RA, Clapham P, Cheingsong-Popov R (1984) Biological properties of human T-cell leukemia virus envelope antigens. In: Gallo RC (ed) Human T-cell leukemia/lymphoma virus. Cold Spring Harbor Laboratory, Cold Spring Harbor, pp 121–131

    Google Scholar 

  • Narayan O, Griffin DE, Clements JE (1978) Virus mutation during ‘slow infection’. Temporal development and characterization of mutants of visna virus recovered from sheep. J Gen Virol 41:343–352

    PubMed  CAS  Google Scholar 

  • Narayan O, Clements JE, Strandberg JD, Cork LC, Griffin DE (1980) Biological characterization of the virus causing leukoencephalitis and arthritis in goats. J Gen Virol 59: 69–79

    Google Scholar 

  • Narayan O, Sheffer D, Griffin DE, Clements JE, Hess J (1984) Lack of neutralizing antibodies to caprine arthritis-encephalitis lentivirus in persistently infected goats can be overcome by immunization with inactivated mycobacterium tuberculosis. J Virol 49: 349–355

    PubMed  CAS  Google Scholar 

  • Neil JC, Hughes D, McFarlane R, Wilkie NM, Onions DE, Lees G, Jarrett O (1984) Transduction and rearrangement of the myc gene by feline leukaemia virus in naturally occurring T-cell leukaemias. Nature 308:814–820

    PubMed  CAS  Google Scholar 

  • Niman HL, Elder JH (1982) Structural analysis of Rauscher virus Gp70 using monoclonal antibodies: sites of antigenicity and P15(E) linkage. Virology 123: 187–205

    PubMed  CAS  Google Scholar 

  • Nobis P, Jaenisch R (1980) Passive immunotherapy prevents expression of endogenous Moloney virus and amplification of proviral DNA in BALB/Mo mice. Proc Natl Acad Sci USA 77: 3677–3681

    PubMed  CAS  Google Scholar 

  • Nusse R, Varmus HE (1982) Many tumors induced by the mouse mammary tumor virus contain a provirus integrated in the same region of the host genome. Cell 31: 99–109

    PubMed  CAS  Google Scholar 

  • O’Donnell PV, Stocken E, Obata Y, Old LJ (1981) Leukemogenic properties of AKR dualtropic (MCF) viruses: amplification of murine leukemia virus-related antigens on thymocytes and acceleration of leukemia development in AKR mice. Virology 112: 548–563

    PubMed  Google Scholar 

  • O’Neill RR, Buckler CE, Theodore TS, Martin MA, Repaske R (1985) Envelope and long terminal repeat sequences of a cloned infectious NZB xenotropic murine leukemia virus. J Virol 53: 100–106

    PubMed  Google Scholar 

  • O’Neill RR, Khan AS, Hoggan MD, Hartley JW, Martin MA, Repaske R (1986) Specific hybridization probes demonstrate fewer xenotropic than mink cell focus-forming murine leukemia virus env-related sequences in DNAs from inbred laboratory mice. J Virol 58: 359–366

    PubMed  Google Scholar 

  • O’Neill RR, Hartley JW, Repaske R, Kozak CA (1987) Amphotropic proviral envelope sequences are absent from the Mus germ line. J Virol 61: 2225–2231

    PubMed  Google Scholar 

  • Oldstone MBA, Jensen F, Elder J, Dixon FJ, Lampert PW (1983) Pathogenesis of the slow disease of the central nervous system associated with wild mouse virus III. Role of input virus and MCF recombinants in disease. Virology 128: 154–165

    PubMed  CAS  Google Scholar 

  • Oliff A, Ruscetti S, Douglass EC, Scolnick E (1981) Isolation of transplantable erythroleukemia cells from mice infected with helper-independent Friend murine leukemia virus. Blood 58: 244, 252–254

    Google Scholar 

  • Oliff A, Collins L, Mirenda C (1983) Molecular cloning of Friend mink cell focus-inducing virus: identification of mink cell focus-inducing virus-like messages in normal and transformed cells. J Virol 48: 542–546

    PubMed  CAS  Google Scholar 

  • Oliff A, Signorelli K, Collins L (1984) The envelope gene and long terminal repeat sequences contribute to the pathogenic phenotype of helper-independent Friend viruses. J Virol 51: 788–794

    PubMed  CAS  Google Scholar 

  • Olsen R (1985) An innovative technique produces a feline leukemia virus vaccine. Vet Med Jan 61–64

    Google Scholar 

  • Oroszlan S, Barbacid M, Copeland T, Aaronson SA, Gilden RV (1981) Chemical and immunological characterization of the major structural protein (p28) of MMC-1, a rhesus monkey endogenous type C virus: homology with the major structural protein of avian reticuloendotheliosis virus. J Virol 39: 845–854

    PubMed  CAS  Google Scholar 

  • Osterhaus A, Weijer K, Uytdehaag F, Jarrett O, Sundquist B, Morein B (1985) Induction of protective immune response in cats by vaccination with feline leukemia virus iscom. J Immunol 135: 591–596

    PubMed  CAS  Google Scholar 

  • Ott D, Friedrich R, Rein A (1990) Sequence analysis of amphotropic and 10A1 murine leukemia viruses: close relationship to mink cell focus-inducing viruses. J Virol 64: 757–766

    PubMed  CAS  Google Scholar 

  • Overbaugh J, Donahue P, Quackenbush S, Hoover EA, Mullins JI (1988b) Molecular cloning of a feline leukemia virus that induces fatal immunodeficiency disease in cats. Science 239: 906–910

    PubMed  CAS  Google Scholar 

  • Overbaugh J, Riedel N, Hoover EA, Mullins JI (1988a) Transduction of endogenous envelope genes by feline leukaemia virus in vitro. Nature 332: 731–734

    PubMed  CAS  Google Scholar 

  • Palker TJ, Clark ME, Langlois AJ, Matthews TJ, Weinhold KJ, Randall RR, Bolognesi DP, Haynes BF (1988) Type-specific neutralization of the human immunodeficiency virus with antibodies to env-encoded synthetic peptides. Proc Natl Acad Sci USA 85: 1932–1936

    PubMed  CAS  Google Scholar 

  • Paquette Y, Hanna Z, Savard P, Brousseau R, Robitaille Y, Jolicoeur P (1989) Retrovirus-induced murine motor neuron disease: mapping the determinant of spongiform degeneration within the envelope gene. PNAS USA 86: 3896–3900

    PubMed  CAS  Google Scholar 

  • Pareky B, Issel CJ, Montelaro RC (1980) Equine infectious anemia virus, a putative lentivirus, contains polypeptides analogous to prototype-C oncornaviruses. Virology 107: 520–525

    Google Scholar 

  • Patarca R, Haseltine WA (1984) Similarities among retrovirus proteins. Nature 312: 496

    PubMed  CAS  Google Scholar 

  • Paterson RG, Lamb RA (1987) Ability of the hydrophobic fusion-related external domain of a paramyxovirus F protein to act as a membrane anchor. Cell 48: 441–452

    PubMed  CAS  Google Scholar 

  • Payne SL, Fang F, Liu C, Dhruva BR, Rwambo P, Issel CJ, Montelaro RC (1987a) Antigenic variation and lentivirus persistence: variations in envelope gene sequences during EIAV infection resemble changes reported for sequential isolates of HIV. Virology 161: 321–331

    PubMed  CAS  Google Scholar 

  • Payne SL, Salinovich O, Nauman SM, Issel CJ, Montelaro RC (1987b) Course and extent of variation of equine infectious anemia virus during parallel persistent infections. J Virol 61: 1266–1270

    PubMed  CAS  Google Scholar 

  • Pedersen NC, Ho EW, Brown ML, Yamamoto JK (1987) Isolation of a T-lymphotropic virus from domestic cats with an immunodeficiency-like syndrome. Science 235: 790–793

    PubMed  CAS  Google Scholar 

  • Peluso R, Haase A, Stowring L, Edwards M, Ventura P (1985) A trojan horse mechanism for the spread of visna virus in monocytes. Virology 147: 231–236

    PubMed  CAS  Google Scholar 

  • Perez LG, Hunter E (1987) Mutations within the proteolytic cleavage site of the Rous Sarcoma virus glycoprotein that block processing to gp85 and gp37. J Virol 61: 1609–1614

    PubMed  CAS  Google Scholar 

  • Perez L, Wills JW, Hunter E (1987a) Expression of the Rous sarcoma virus env gene from a simian virus 40 late-region replacement vector: effects of upstream initiation codons. J Virol 61: 1276–1281

    PubMed  CAS  Google Scholar 

  • Perez LG, Davis GL, Hunter E (1987b) Mutants of the Rous sarcoma virus envelope glycoprotein that lack the transmembrane anchor and/or cytoplasmic domains: analysis of intracellular transport and assembly into virions. J Virol 61: 2981–2988

    PubMed  CAS  Google Scholar 

  • Perlman D, Halvorson HO (1983) A putative signal peptidase recognition site and sequence in eukaryotic and prokaryotic signal peptides. J Mol Biol 167: 391–409

    PubMed  CAS  Google Scholar 

  • Perryman LE, O’Rourke KI, McGuire TC (1988) Immune responses are required to terminate viremia in equine infectious anemia lentivirus infection. J Virol 62: 3073–3076

    PubMed  CAS  Google Scholar 

  • Peters G, Brookes S, Smith R, Dickson C (1983) Tumorigenesis by mouse mammary tumor virus: evidence for a common region for provirus integration in mammary tumors. Cell 33: 369–377

    PubMed  CAS  Google Scholar 

  • Peterson A, Seed B (1988) Genetic analysis of monoclonal antibody and HIV binding sites on the human lymphocyte antigen CD4. Cell 54: 65–72

    PubMed  CAS  Google Scholar 

  • Pinter A, Honnen WJ (1983) Comparison of structural domains of gp70s of ecotropic AKV and dualtropic MCF-247 MuLVs. Virology 129: 40–50

    PubMed  CAS  Google Scholar 

  • Pinter A, Honnen WJ (1984) Characterization of structural and immunological properties of specific domains of Friend ecotropic and dual-tropic murine leukemia virus gp70s. J Virol 49: 452–458

    PubMed  CAS  Google Scholar 

  • Pinter A, Honnen WJ (1985) The mature form of the Friend spleen focus-forming virus envelope protein, gp65, is efficiently secreted from cells. Virology 143: 646–650

    PubMed  CAS  Google Scholar 

  • Pinter A, Honnen WJ (1988) O-linked glycosylation of retroviral envelope gene products. J Virol 62: 1016–1021

    PubMed  CAS  Google Scholar 

  • Pinter A, Honnen WJ, Tung J-S, O’Donnell PV, Hammerling U (1982) Structural domains of endogenous murine leukemia virus gp70s containing specific antigenic determinants defined by monoclonal antibodies. Virology 116: 499–516

    PubMed  CAS  Google Scholar 

  • Piraino F (1967) The mechanism of genetic resistance of chick embryo cells to infection by Rous sarcoma virus-Bryan strain (BS-RSV). Virology 32: 700–707

    PubMed  CAS  Google Scholar 

  • Plata F, Autran B, Martins LP, Wain-Hobson S, Raphael M, Mayaud C, Denis M, Guillon JM, Debre P (1987) AIDS virus-specific cytotoxic T-lymphocytes in lung disorders. Nature 328: 348–351

    PubMed  CAS  Google Scholar 

  • Poiesz BJ, Ruscetti FW, GAzdar AF, Bunn PA, Minna JD, Gallo RC (1980) Detection and isolation of type C retrovirus particles from fresh and cultured lymphocytes of a patient with cutaneous T-cell lymphoma. Proc Natl Acad Sci USA 77: 7415–7419

    PubMed  CAS  Google Scholar 

  • Popovic M, Sarngadharan MG, Read E, Gallo RC (1984) Detection, isolation, and continuous production of cytopathic retroviruses (HTLV-III) from patients with AIDS and pre-AIDS. Science 224: 497–500

    PubMed  CAS  Google Scholar 

  • Porter AG, Barber C, Carey NH, Hallewell RA, Threlfall G, Emtage JS (1979) Complete nucleotide sequence of an influenza virus haemagglutinin gene from cloned DNA. Nature 282: 471–477

    PubMed  CAS  Google Scholar 

  • Poss ML, Mullins JI, Hoover EA (1989) Posttranslational modifications distinguish the envelope glycoprotein of the immunodeficiency disease-inducing feline leukemia virus retrovirus. J Virol 63: 189–195

    PubMed  CAS  Google Scholar 

  • Power MD, Marx PA, Bryant ML, Gardner MB, Barr PJ, Luciw P (1986) Nucleotide sequence of SRV-1, a type D acquired immune deficiency syndrome retrovirus. Science 231: 1567–1572

    PubMed  CAS  Google Scholar 

  • Purchase HG, Okazaki W, Vogt PK, Hanafusa H, Burmester BR, Crittenden LB (1977) Oncogenicity of avian leukosis viruses of different subgroups and of mutants of sarcoma viruses. Infect Immun 15:423–428

    PubMed  CAS  Google Scholar 

  • Putney SD, Matthews TJ, Robey WG, Lynn DL, Robert-Guroff M, Mueller WT, Langlois AJ, Ghrayeb J, Petteway S, Weinhold KJ, Fischinger PJ, Wong-Staal F, Gallo RD, Bolognesi DP (1986) HTLV-III/LAV-neutralizing antibodies to an E. coli-produced fragment of the virus envelope. Science 234: 1392–1395

    PubMed  CAS  Google Scholar 

  • Quint W, Quax W, van der Putten H, Berns A (1981) Characterization of AKR murine leukemia virus sequences in AKR mouse substrains and structure of integrated recombinant genomes in tumor tissues. J Virol 39: 1–10

    PubMed  CAS  Google Scholar 

  • Quint W, Boelens W, van Wezenbeek P, Cuypers T, Maandag ER, Selten G, Berns A (1984) Generation of AKR mink cell focus-forming viruses: a conserved single-copy xenotrope-like provirus provides recombinant long terminal repeat sequences. J Virol 50: 432–438

    PubMed  CAS  Google Scholar 

  • Racevskis J, Koch G (1978) Synthesis and processing of viral proteins in Friend erythroleukemia cell lines. Virology 87: 354–365

    PubMed  CAS  Google Scholar 

  • Racevskis J, Sarkar NH (1980) Murine mammary tumor virus structural protein interactions: formation of oligomeric complexes with cleavable cross-linking agents. J Virol 35: 937–948

    PubMed  CAS  Google Scholar 

  • Raines MA, Lewis WG, Crittenden LB, Kung HJ (1985) c-erbB activation in avian leukosis virus-induced erythroblastosis: clustered integration sites and the arrangement of provirus in the c-erbB alleles. Proc Natl Acad Sci USA 82: 2287–2291

    PubMed  CAS  Google Scholar 

  • Rasheed S, Pal BK, Gardner M (1982) Characterization of a highly oncogenic murine leukemia virus from wild mice. Int J Cancer 29: 345–350

    PubMed  CAS  Google Scholar 

  • Rassart E, Nelbach L, Jolicoeur P (1986) Cas-Br-E murine leukemia virus: sequencing of the paralytogenic region of its genome and derivation of specific probes to study its origin and the structure of its recombinant genomes in leukemic tissues. J Virol 60: 910–919

    PubMed  CAS  Google Scholar 

  • Redmond S, Peters G, Dickson C (1984) Mouse mammary tumor virus can mediate cell fusion at reduced pH. Virology 133: 393–402

    PubMed  CAS  Google Scholar 

  • Rein A (1982) Interference grouping of murine leukemia viruses: a distinct receptor for the MCF-recombinant viruses in mouse cells. Virology 120: 251–257

    PubMed  CAS  Google Scholar 

  • Rein A, Schultz A (1984) Different recombinant murine leukemia viruses use different cell surface receptors. Virology 136: 144–152

    PubMed  CAS  Google Scholar 

  • Richardson NE, Brown NR, Hussey RE, Vaid A, Matthews TJ, Bolognesi DP, Reinherz EL (1988) Binding site for human immunodeficiency virus coat protein gp120 is located in the NH2-terminal region of T4 (CD4) and requires the intact variable-region-like domain. Proc Natl Acad Sci USA 85:6102–6106

    PubMed  CAS  Google Scholar 

  • Riedel N, Hoover EA, Gasper PW, Nicolson MO, Mullins JI (1986) Molecular analysis and pathogenesis of the feline aplastic anemia retrovirus, feline leukemia virus C-SARMA. J Virol 60: 242–250

    PubMed  CAS  Google Scholar 

  • Riedel N, Hoover EA, Dornsife RE, Mullins JI (1988) Pathogenic and host range determinants of the feline aplastic anemia retrovirus. Proc Natl Acad Sci USA 85: 2758–2762

    PubMed  CAS  Google Scholar 

  • Robert-Guroff M, Brown M, Gallo RC (1985) HTLV-III-neutralizing antibodies in patients with AIDS-related complex. Nature 316: 72–74

    PubMed  CAS  Google Scholar 

  • Robert-Guroff M, Reitz MJ, Robey WG, Gallo RC (1986) In vitro generation of an HTLV-III variant by neutralizing antibody. J Immunol 137: 3306–3309

    PubMed  CAS  Google Scholar 

  • Robey WG, Arthur LO, Matthews TJ, Langlois A, Copeland TD, Lerche NW, Oroszlan S, Bolognesi DP, Gilden RV, Fischinger PJ (1986) Prospect for prevention of human immunodeficiency virus infection: purified 120-kDa envelope glycoprotein induces neutralizing antibody. Proc Natl Acad Sci USA 83: 7023–7027

    PubMed  CAS  Google Scholar 

  • Robey WG, Nara PL, Poore CM, Popovic M, McLane MF, Barin F, Essex M, Fischinger PJ (1987) Rapid assessment of relationships among HIV isolates by oligopeptide analyses of external envelope glycoproteins. Aids Res Hum Retroviruses 3: 401–408

    PubMed  CAS  Google Scholar 

  • Robinson HL, Astrin SM, Senior AM, Salazar FH (1981) Host susceptibility to endogenous viruses: defective, glycoprotein-expressing proviruses interfere with infections. J Virol 40: 745–751

    PubMed  CAS  Google Scholar 

  • Rommelaere J, Faller DV, Hopkins N (1978) Characterization and mapping of RNase T1-resistant oligonucleotides derived from the genomes of Akv and MCF murine leukemia viruses. Proc Natl Acad USA 75: 495–499

    CAS  Google Scholar 

  • Roth MG, Compans RW, Giusti L, Damis AR, Nayak DP, Gething M-, Sambrook J (1983a) Influenza virus hemagglutinin expression is polarized in cells infected with recombinant SV40 viruses carrying cloned hemagglutinin DNA. Cell 33: 435–443

    PubMed  CAS  Google Scholar 

  • Roth MG, Srinivas RV, Compans RW (1983b) Basolateral maturation of retroviruses in polarized epithelial cells. J Virol 45: 1065–1073

    PubMed  CAS  Google Scholar 

  • Rothman JE, Katz FN, Lodish HF (1978) Glycosylation of a membrane protein is restricted to the growing polypeptide chain but is not necessary for insertion as a transmembrane protein. Cell 15: 1447–1454

    PubMed  CAS  Google Scholar 

  • Rowe WP, Hartley JW (1983) Genes affecting mink cell focus-inducing (MCF) murine leukemia virus infection and spontaneous lymphoma in AKR Fl hybrids. J Exp Med 158: 353–364

    PubMed  CAS  Google Scholar 

  • Rowe WP, Cloyd MW, Hartley JW (1980) Status of the association of mink cell focus-forming viruses with leukemogenesis. Cold Spring Harbor Symp Quant Biol 44: 1265–1268

    PubMed  Google Scholar 

  • Ruegg CL, Monell CR, Strand M (1989) Identification, using synthetic peptides, of the minimum amino acid sequence from the retroviral transmembrane protein p15E required for inhibition of lymphoproliferation and its similarity to gp21 of human T-lymphotropic virus types I and II. J Virol 63: 3250–3256

    PubMed  CAS  Google Scholar 

  • Rup BJ, Spence JL, Haelzer JD, Lewis RB, Carpenter CR, Rubin AS, Bose HR (1979) Immunosuppression induced by avian reticuloendotheliosis virus: mechanism of induction of the suppressor cell. J Immunol 123: 1362–1370

    PubMed  CAS  Google Scholar 

  • Ruscetti S, Wolff L (1984) Spleen focus-forming virus: relationship of an altered envelope gene to the development of a rapid erythroleukemia. Curr Top Microbiol Immunol 112: 21–44

    PubMed  CAS  Google Scholar 

  • Ruscetti S, Linemeyer D, Field J, Troxler D, Scolnick EM (1979) Characterization of a protein found in cells infected with the spleen focus-forming virus that shares immunological cross-reactivity with the gp70 found in mink cell focus-inducing virus particles. J Virology 30: 787–798

    PubMed  CAS  Google Scholar 

  • Ruscetti S, Davis L, Field J, Oliff A (1981a) Friend murine leukemia virus-induced leukemia is associated with the formation of mink cell focus-inducing viruses and is blocked in mice expressing endogenous mink cell focus-inducing xenotropic viral envelope genes. J Exp Med 154:907–920

    PubMed  CAS  Google Scholar 

  • Ruscetti SK, Field JA, Scolnick EM (1981b) Polycythaemia and anaemia-inducing strains of spleen focus-forming virus differ in post-translational processing of envelope-related glycoproteins. Nature 294: 663–665

    PubMed  CAS  Google Scholar 

  • Ruscetti S, Field J, Davis L, Oliff A (1982) Factors determining the susceptibility of NIH swiss mice to erythroleukemia induced by Friend murine leukemia virus. Virology 117: 357–365

    PubMed  CAS  Google Scholar 

  • Rusche JR, Javaherian K, McDanal C, Petro J, Lynn DL, Grimaila R, Langlois A, Gallo RC, Arthur LO, Fischinger PJ, Bolognesi DP, Putney SD, Matthews TJ (1988) Antibodies that inhibit fusion of human immunodeficiency virus-infected cells bind a 24-amino acid sequence of the viral envelope, gpl20. Proc Natl Acad Sci USA 85: 3198–3202

    PubMed  CAS  Google Scholar 

  • Rushlow K, Olsen K, Stiegler G, Payne SL, Montelaro RC, Issel CJ (1986) Lentivirus genomic organization: the complete nucleotide sequence of the env gene region of equine infectious anemia virus. Virology 155: 309–321

    PubMed  CAS  Google Scholar 

  • Russell PH, Jarrett O (1978) The specificity of neutralizing antibodies to feline leukaemia viruses. Int J Cancer 21: 768–778

    PubMed  CAS  Google Scholar 

  • Ruta M, Bestwick R, Machida C, Kabat D (1983) Loss of leukemogenicity caused by mutations in the membrane glycoprotein structural gene of Friend spleen focus-forming virus. Proc Natl Acad Sci USA 80: 4704–4708

    PubMed  CAS  Google Scholar 

  • Saag M, Hahn BH, Gibbons J, Li Y, Parks ES, Parks WP, Shaw GM (1988) Extensive variation of Human Immunodeficiency Virus Type-1 in vivo. Nature 334: 440–444

    PubMed  CAS  Google Scholar 

  • Salinovich O, Payne SL, Montelaro RC, Hussain KA, Issel CJ, Schnorr KL (1986) Rapid emergence of novel antigenic and genetic variants of equine infectious anemia virus during persistent infection. J Virol 57: 71–80

    PubMed  CAS  Google Scholar 

  • Salter DW, Smith EJ, Hughes SH, Wright SE, Crittenden LB (1987) Transgenic chickens: insertion of retroviral genes into the chicken germ line. Virology 157: 236–240

    PubMed  CAS  Google Scholar 

  • Salter DW, Smith EJ, Hughes SH, Wright SE, Fadly AM, Witter RL, Crittenden LB (1986) Gene Insertion into the chicken germ line by retroviruses. Poult Sci 65: 1445–1458

    PubMed  CAS  Google Scholar 

  • Sattentau QJ, Dalgeish AG, Weiss RA, Beverley PCL (1986) Epitopes of the CD4 antigen and HIV infection. Science 234: 1120–1123

    PubMed  CAS  Google Scholar 

  • Sattentan QJ, Weiss RA (1988) The CD4 antigen: physiological ligand and HIV receptor. Cell 52: 631–633

    Google Scholar 

  • Sattentau QJ, Clapham PR, Weiss RA, Beverley PC, Montagnier L, Alhalabi MF, Gluckmann JC, Klatzmann D (1988) The human and simian immunodeficiency viruses HIV-1, HIV-2 and SIV interact with similar epitopes on their cellular receptor, the CD4 molecule. AIDS 2: 101–105

    PubMed  CAS  Google Scholar 

  • Schafer W, Schwarz H, Thiel H-J, Fischinger PJ, Bolognesi DP (1977) Properties of mouse leukemia viruses. XIV. Prevention of spontaneous AKR leukemia by treatment with group specific antibody against the major virus gp71 glycoprotein. Virology 83: 207–210

    PubMed  CAS  Google Scholar 

  • Schmidt DM, Synderman R (1988) Retroviral protein p15E and tumorigenesis. Expression is neither required nor sufficient for tumor development. J Immunol 140: 4035–4041

    PubMed  CAS  Google Scholar 

  • Schochetman G, Arthur LO, Long CW, Massey RJ (1979) Mice with spontaneous mammary tumors develop type-specific neutralizing and cytotoxic antibodies against the mouse mammary tumor virus envelope protein gp52. J Virol 32: 131–139

    PubMed  CAS  Google Scholar 

  • Schultz A, Rein A, Henderson L, Oroszlan S (1983) Biological, chemical, and immunological studies of Rauscher ecotropic and mink cell focus-forming viruses from JLS-V9 cells. J Virol 45: 995–1003

    PubMed  CAS  Google Scholar 

  • Schwartz DE, Tizard R, Gilbert W (1983) Nucleotide sequence of Rous sarcoma virus. Cell 32: 853–869

    PubMed  CAS  Google Scholar 

  • Scott JV, Stowring L, Brahic M, Haase AT, Narayan O, Vigne R (1979) Antigenic variation in visna virus. Cell 18:321–327

    PubMed  CAS  Google Scholar 

  • Selten G, Cuypers HT, Zijlstra M, Melief C, Berns A (1984) Involvement of c-myc in MuLV-induced T cell lymphomas in mice: frequency and mechanisms of activation. EMBO J 3: 3215–3222

    PubMed  CAS  Google Scholar 

  • Shaw GM, Hahn BH, Arya SK, Groopman JE, Gallo RC, Wong-Staal F (1984) Molecular characterization of human T-cell leukemia (lymphotropic) virus Type III in the Acquired Immune Deficiency Syndrome. Science 226: 1165–1171

    PubMed  CAS  Google Scholar 

  • Shibuya T, Mak TW (1982) Host control of susceptibility to erythroleukemia and to the types of leukemia induced by Friend murine leukemia virus: initial and late stages. Cell 31: 483–493

    PubMed  CAS  Google Scholar 

  • Sidgurdsson B (1954a) Maedi, a slow progressive pneumonia of sheep: an epizoological and pathological study. Br Vet J 110: 255–270

    Google Scholar 

  • Sidgurdsson B (1954b) Rida, a chronic encephalitis of sheep: with general remarks on infections which develop slowly and some of their special characteristics. Br Vet J 110: 341–354

    Google Scholar 

  • Siliciano RF, Lawton T, Knall C, Karr RW, Berman P, Gregory T, Reinherz EL (1988) Analysis of host-virus interactions in AIDS with anti-gp120 T cell clones: effect of HIV sequence variation and a mechanism for CD4 + cell depletion. Cell 54: 561–575

    PubMed  CAS  Google Scholar 

  • Silver J (1984) Role of mink cell focus-inducing virus in leukemias induced by Friend ecotropic virus. J Virol 50: 872–877

    PubMed  CAS  Google Scholar 

  • Silver J, Kozak C (1986) Common proviral integration region on mouse chromosome 7 in lymphomas and myelogenous leukemias induced by Friend murine leukemia virus. J Virol 57: 526–533

    PubMed  CAS  Google Scholar 

  • Simon MC, Smith RE, Hayward WS (1984) Mechanisms of oncogenesis by subgroup F avian leukosis viruses. J Virol 52: 1–8

    PubMed  CAS  Google Scholar 

  • Simon MC, Neckameyer WS, Hayward WS, Smith RE (1987) Genetic determinants of neoplastic diseases induced by a subgroup F avian leukosis virus. J Virol 61: 1203–1212

    PubMed  CAS  Google Scholar 

  • Sitbon M, Nishio J, Wehrly K, Chesebro B (1985) Pseudotyping of dual-tropic recombinant viruses generated by infection of mice with different ecotropic murine leukemia viruses. Virology 140: 144–151

    PubMed  CAS  Google Scholar 

  • Sitbon M, Sola B, Evans L, Nishio J, Hayes SF, Nathanson K, Garon CF, Chesebro B (1986) Hemolytic anemia and erythroleukemia, two distinct pathogenic effects of Friend MuLV: mapping of the effects to different regions of the viral genome. Cell 47: 851–859

    PubMed  CAS  Google Scholar 

  • Skehel JJ, Bayley PM, Brown EB, Martin SR, Waterfield MS, White JM, Wilson IA, Wiley DC (1982) Changes in the conformation of influenza virus hemagglutinin at the pH optimum of virus-mediated membrane fusion. Proc Natl Acad Sci USA 79: 968–972

    PubMed  CAS  Google Scholar 

  • Skinner MA, Ting R, Langlois AJ, Weinhold KJ, Lyerly HK, Javaherian K, Matthews TJ (1988) Characteristics of a neutralizing monoclonal antibody to the HIV envelope glycoprotein. AIDS Res Hum Retroviruses 4: 187–197

    PubMed  CAS  Google Scholar 

  • Smith RE, Schmidt EV (1982) Induction of anemia by avian leukosis viruses of five subgroups. Virology 117:516–518

    PubMed  CAS  Google Scholar 

  • Smith DH, Byrn RA, Marsters SA, Gregory T, Groopman JE, Capon DJ (1987) Blocking of HIV-1 infectivity by a soluble, secreted form of the CD4 antigen. Science 238: 1704–1707

    PubMed  CAS  Google Scholar 

  • Snyderman R, Cianciolo GJ (1984) Immunosuppressive activity of the retroviral envelope protein p15E and its possible relationship to neoplasia. Immunol Today 5: 240

    CAS  Google Scholar 

  • Sodroski J, Goh WC, Rosen C, Campbell K, Haseltine WA (1986) Role of the HTLV-III/LAV envelope in syncytium formation and cytopathicity. Nature 322: 470–474

    PubMed  CAS  Google Scholar 

  • Somasundaran M, Robinson HL (1987) A major mechanism of human immunodeficiency virus-induced cell killing does not involve cell fusion. J Virol 61: 3114–3119

    PubMed  CAS  Google Scholar 

  • Sommerfelt MA, Williams BP, Clapham PR, Solomon E, Goodfellow PN, Weiss RA (1988) Hutman T cell leukemia viruses use a receptor determined by human chromosome 17. Science 242: 1557–1559

    PubMed  CAS  Google Scholar 

  • Sommerfelt MA, Weiss RA (1990) Receptor interference groups among 20 retroviruses plating on human cells. J Gen Virol (in press)

    Google Scholar 

  • Sonigo P, Alizon M, Staskus K, Klatzmann D, Cole S, Danos O, Retzel E, Tiollais P, Haase A, Wain-Hobson S (1985) Nucleotide sequence of the visna lentivirus: relationship to the AIDS virus. Cell 42: 369–382

    PubMed  CAS  Google Scholar 

  • Sonigo P, Barker C, Hunter E, Wain-Hobson S (1986) Nucleotide sequence of Mason-Pfizer monkey virus: an immunosuppressive D-type retrovirus. Cell 45: 375–385

    PubMed  CAS  Google Scholar 

  • Spiro C, Gliniak B, Kabat D (1988) A tagged helper-free Friend virus causes clonal erythroblast immortality by specific proviral integration in the cellular genome. J Virol 62: 4129–4135

    PubMed  CAS  Google Scholar 

  • Srinivas RV, Compans RW (1983) Membrane association and defective transport of spleen focus-forming virus glycoproteins. J Biol Chem 258: 14718–14724

    PubMed  CAS  Google Scholar 

  • Srinivas RV, Kilpatrick DR, Compans RW (1987) Intracellular transport and leukemogenicity of spleen focus-forming virus envelope glycoproteins with altered transmembrane domains. J Virol 61:4007–4011

    PubMed  CAS  Google Scholar 

  • Stanley J, Bhaduri LM, Narayan O, Clements JE (1987) Topographical rearrangements of visna virus envelope glycoprotein during antigenic drift. J Virol 61: 1019–1028

    PubMed  CAS  Google Scholar 

  • Starcich BR, Hahn BH, Shaw GM, McNeely PD, Modrow S, Wolf, H, Parks ES, Parks WP, Josephs SF, Gallo RC, Wong-Staal F (1986) Identification and characterization of conserved and variable regions in the envelope gene of HTLV-III/LAV, the retrovirus of AIDS. Cell 45: 637–648

    PubMed  CAS  Google Scholar 

  • Steffen D (1984) Proviruses are adjacent to c-myc in some murine leukemia virus-induced lymphomas. Proc Natl Acad Sci USA 81: 2097–2101

    PubMed  CAS  Google Scholar 

  • Stein BS, Gowda SD, Lifson JD, Penhallow RC, Bensch KG, Engleman EG (1987) pH-independent HIV entry into CD4-positive T cells via virus envelope fusion to the plasma membrane. Cell 49: 659–668

    PubMed  CAS  Google Scholar 

  • Steinheider G, Seidel HJ, Kreja L (1979) Comparison of the effects of anemia and polycythemia inducing Friend virus complex. Experientia 35: 1173–1175

    PubMed  CAS  Google Scholar 

  • Stephens EB, Compans RW (1986) Nonpolarized expression of a secreted murine leukemia virus glycoprotein in polarized epithelial cells. Cell 47: 1053–1059

    PubMed  CAS  Google Scholar 

  • Stephens EB, Compans RW, Earl P, Moss B (1986) Surface expression of viral glycoproteins is polarized in epithelial cells infected with recombinant vaccinia viral vectors. EMBO J 5: 237

    PubMed  CAS  Google Scholar 

  • Stevenson M, Meier C, Mann AM, Chapman N, Wasiak A (1988) Envelope glycoprotein of HIV induces interferences and cytolysis in CD4 + cells: mechanism for persistence in AIDS. Cell 53:483–496

    PubMed  CAS  Google Scholar 

  • Stewart MA, Warnock M, Wheeler A, Wilkie N, Mullins JI, Onions DE, Neil JC (1986) Nucleotide sequences of a feline leukemia virus subgroup A envelope gene and long terminal repeat and evidence for the recombinational origin of subgroup B viruses. J Virol 58: 825–834

    PubMed  CAS  Google Scholar 

  • Stewart TA, Pattengale PK, Leder P (1984) Spontaneous mammary adenocarcinomas in transgenic mice that carry and express MTV/myc fusion genes. Cell 38: 627–637

    PubMed  CAS  Google Scholar 

  • Stoye J, Coffin J (1985) Endogenous Viruses. In: Weiss R et al. (eds) Molecular biology of tumor viruses: RNA tumor viruses (supplement) Cold Spring Harbor Laboratory, Cold Spring Harbor, pp 357–404

    Google Scholar 

  • Stoye JP, Coffin JM (1987) The four classes of endogenous murine leukemia virus: structural relationships and potential for recombination. J Virol 61: 2659–2669

    PubMed  CAS  Google Scholar 

  • Stoye JP, Coffin JM (1988) Polymorphism of murine endogenous proviruses revealed by using virus class-specific oligonucleotide probes. J Virol 62: 168–175

    PubMed  CAS  Google Scholar 

  • Stromberg K, Benveniste RE, Arthur LO, Rabin H, Giddens WE, Ochs HE, Morton WR, Tsai CC (1984) Characterization of exogenous type D retrovirus from a fibroma of a macaque with simian AIDS and fibromatosis. Science 224: 289–292

    PubMed  CAS  Google Scholar 

  • Sutcliffe JG, Shinnick TM, Verma IM, Lerner RA (1980) Nucleotide sequence of Moloney leukemia virus: 3′ end reveals details of replication, analogy to bacterial transposons, and an unexpected gene. Proc Natl Acad Sci USA 77: 3302–3306

    PubMed  CAS  Google Scholar 

  • Swain SL (1983) T cell subsets and the recognition of MHC class. Immunol Rev 74: 129–142

    PubMed  CAS  Google Scholar 

  • Szurek PF, Yuen PH, Jerzy R, Wong PKY (1988) Identification of point mutations in the envelope gene of Moloney murine leukemia virus TB temperature-sensitive paralytogenic mutant ts1: molecular determinants for neurovirulence. J Virol 62: 357–360

    PubMed  CAS  Google Scholar 

  • Takahashi H, Cohen J, Hosmalin A, Cease KB, Houghten R, Cornette JL, DeLisi C, Moss B, Germain RN, Berzofsky JA (1988) An immunodominant epitope of the human immunodeficiency virus envelope glycoprotein gpl60 recognized by class I major histocompatibility complex molecule-restricted murine cytotoxic T lymphocytes. Proc Natl Acad Sci USA 85: 3105–3109

    PubMed  CAS  Google Scholar 

  • Teich N (1984) Taxonomy of Retroviruses. In: Weiss R et al. (eds) Molecular biology of tumor viruses, RNA Tumor Viruses, 2 edn. Cold Spring Harbor Laboratory, Cold Spring Harbor, pp 25–208

    Google Scholar 

  • Temin HM (1988) Mechanisms of cell killing/cytopathic effects by nonhuman retroviruses. Rev Infect Dis 10: 399–405

    PubMed  CAS  Google Scholar 

  • Thayer RM, Power MD, Bryant ML, Gardner MB, Barr PJ, Luciw PA (1987) Sequence relationships of type D retroviruses which cause simian acquired immunodeficiency syndrome. Virology 157: 317–329

    PubMed  CAS  Google Scholar 

  • Thomas CY (1986) AKR ecotropic murine leukemia virus SL3–3 forms envelope gene recombinants in vivo. J Virol 59: 23–30

    PubMed  CAS  Google Scholar 

  • Thomas CY, Coffin JM (1982) Genetic alterations of RNA leukemia viruses associated with the development of spontaneous thymic leukemia in AKR/J mice. J Virol 43: 416–426

    PubMed  CAS  Google Scholar 

  • Thomas CY, Khiroya R, Schwartz RS, Coffin JM (1984) Role of recombinant ecotropic and polytropic viruses in the development of spontaneous thymic lymphomas in HRS/J mice. J Virol 50: 397–407

    PubMed  CAS  Google Scholar 

  • Thomas CY, Boykin BJ, Famulari NG, Coppola MA (1986) Association of recombinant murine leukemia viruses of the class II genotype with spontaneous lymphomas in CWD mice. J Virol 58: 314–323

    PubMed  CAS  Google Scholar 

  • Thormar H, Sigurdsardottier B (1962) Growth of visna virus in primary tissue cultures from various animal species. Acta Pathol Microbiol Scand 55: 180–186

    PubMed  CAS  Google Scholar 

  • Thormar H, Barshatzky MR, Arnesen K, Kozlowski PB (1983) The emergence of antigenic variants is a rare event in long-term visna virus infection in vivo. J Gen Virol 64: 1427–1432

    PubMed  Google Scholar 

  • Traunecker A, Luke W, Karjalainen K (1988) Soluble CD4 molecules neutralize human immunodeficiency virus type 1. Nature 331: 84–86

    PubMed  CAS  Google Scholar 

  • Tsai WP, Oroszlan S (1988) Novel glycosylation pathways of retroviral envelope proteins identified with avian reticuloendotheliosis virus. J Virol 62: 3167–3174

    PubMed  CAS  Google Scholar 

  • Tsichlis PN, Conklin KF, Coffin JM (1980) Mutant and recombinant avian retroviruses with extended host range. Proc Natl Acad Sci USA 77: 536–540

    PubMed  CAS  Google Scholar 

  • Tyler DS, Nastala CL, Stanley SD, Matthews TJ, Lyerly HK, Bolognesi DP, Weinhold KJ (1989) GP120 specific cellular cytotoxicity in HIV-1 seropositive individuals. Evidence for circulating CD16 + effector cells armed in vivo with cytophilic antibody. J Immunol 142: 1177–1182

    PubMed  CAS  Google Scholar 

  • Van Beveren C, Coffin J, Hughes S (1985) Nomenclature. In: Weiss R et al. (eds) Molecular biology of tumor viruses. Cold Spring Harbor Laboratory, Cold Spring Harbor, pp 559 – 1222

    Google Scholar 

  • Van Greinsven LJLD, Vogt M (1980) Rauscher “mink cell focus-inducing” (MCF) virus causes erythroleukemia in mice: its isolation and properties. Virology 101: 376–388

    Google Scholar 

  • Venable RM, Pastor RW, Brooks BR, Carson FW (1989) Theoretically determined three-dimensional structures for amphipathic segments of the HIV-1 gp41 envelope protein. AIDS Res Hum Retro 5: 7–22

    CAS  Google Scholar 

  • Vogt M, Haggblom C, Swift S, Haas M (1985) Envelope gene and long terminal repeat determine the different biological properties of Rauscher, Friend, and Moloney mink cell focus-inducing viruses. J Virol 55: 184–192

    PubMed  CAS  Google Scholar 

  • Vogt PK (1977) Genetics of RNA tumor viruses. In: Fraenkel-Conrat H, Wagner R (eds) Comprehensive Virology, vol. 9, Plenum, New York, pp 341–455

    Google Scholar 

  • Von Heijne G (1983) Patterns of amino acids near signal-sequence cleavage sites. Eur J Biochem 133: 17–21

    Google Scholar 

  • Von Heijne G (1984) Analysis of the distribution of charged residues in the N-terminal region of signal sequences: implications for protein export in prokaryotic and eukaryotic cells. EMBO J 3: 2315–2318

    Google Scholar 

  • Von Heijne G (1985) Signal sequences. The limits of variation. J Mol Biol 184: 99–105

    Google Scholar 

  • Voytek P, Kozak C (1988) HoMuLV: a novel pathogenic ecotropic virus isolated from the european mouse, Mus hortulanus. Virology 165: 469–475

    PubMed  CAS  Google Scholar 

  • Wahren B, Morfeldt-Mansson L, Biberfeld G, Moberg L, Sonnerborg A, Ljungman P, Werner A, Kurth R, Gallo R, Bolognesi D (1987) Characteristics of the specific cell-mediated immune response in human immunodeficiency virus infection. J Virol 61: 2017–2023

    PubMed  CAS  Google Scholar 

  • Walker BD, Kowalski M, Goh WC, Kozarsky K, Krieger M, Rosen C, Rohrschneider L, Haseltine WA, Sodroski J (1987) Inhibition of human immunodeficiency virus syncytium formation and virus replication by castanospermine. Proc Natl Acad Sci USA 84: 8120–8124

    PubMed  CAS  Google Scholar 

  • Walter P, Lingappa VR (1986) Mechanism of protein translocation across the endoplasmic reticulum membrane. Annu Rev Cell Biol 2: 499–516

    PubMed  CAS  Google Scholar 

  • Wang LH, Duesberg P, Kawai S, Hanafusa H (1976) The location of envelope-specific and sarcoma-specific oligonucleotides on the RNA of Schmidt-Ruppin Rous sarcoma virus. Proc Natl Acad Sci USA 73: 447–451

    PubMed  CAS  Google Scholar 

  • Watanabe M, Reimann KA, DeLong PA, Liu T, Fisher RA, Letvin NL (1989) Effect of recombinant soluble CD4 in rhesus monkeys infected with simian immunodeficiency virus of macaques. Nature 337: 267–270

    PubMed  CAS  Google Scholar 

  • Weinhold KJ, Lyerly HK, Matthews TJ, Tyler DS, Ahearne PM, Stine KC, Langlois AJ, Durack DT, Bolognesi DP (1988) Cellular anti-GP120 cytolytic reactivities in HIV-1 seropositive individuals. Lancet 1:902–905

    PubMed  CAS  Google Scholar 

  • Weiss R (1984) Experimental biology and assay of RNA tumor viruses. In: Weiss R et al. (eds) Molecular biology of tumor viruses, RNA Tumor Viruses, 2 edn. Cold Spring Harbor Laboratory, Cold Spring Harbor, pp 209–260

    Google Scholar 

  • Weiss RA, Clapham P, Nagy K, Hoshino H (1985) Envelope properties of human T-cell leukemia viruses. Curr Top Microbiol Immunol 115: 235–245

    PubMed  CAS  Google Scholar 

  • Weiss RA, Clapham PR, Weber JN, Dalgleish AG, Lasky LA, Berman PW (1986) Variable and conserved neutralization antigens of human immunodeficiency virus. Nature 324: 572–575

    PubMed  CAS  Google Scholar 

  • Weiler SK, Joy AE, Temin HM (1980) Correlation between cell killing and massive second-round superinfection by members of some subgroups of avian leukosis virus. J Virol 33: 494–506

    Google Scholar 

  • White J, Kielian M, Helenius A (1983) Membrane fusion proteins of enveloped animal viruses. Q Rev Biophys 16: 151–195

    PubMed  CAS  Google Scholar 

  • Willey RL, Rutledge RA, Dias S, Folks T, Theodore T, Buckler CE, Martin MA (1986) Identification of conserved and divergent domains within the envelope gene of the acquired immunodeficiency syndrome retrovirus. Proc Natl Acad Sci USA 83: 5038–5042

    PubMed  Google Scholar 

  • Willey RL, Bonifacino JS, Potts BJ, Martin MA, Klausner RD (1988a) Biosynthesis, cleavage, and degradation of the human immunodeficiency virus 1 envelope glycoprotein gp160. Proc Natl Acad Sci USA 85: 9580–9584

    PubMed  CAS  Google Scholar 

  • Willey RL, Smith DH, Lasky LA, Theodore TS, Earl PL, Moss B, Capon DJ, Martin MA (1988b) In vitro mutagenesis identifies a region within the envelope gene of the human immunodeficiency virus that is critical for infectivity. J Virol 62: 139–147

    PubMed  CAS  Google Scholar 

  • Wills JW, Hardwick JM, Shaw K, Hunter E (1983) Alteration in the transport and processing of Rous sarcoma virus envelope glycoproteins mutated in the signal and anchor regions. J Cell Biochem 23: 81–94

    PubMed  CAS  Google Scholar 

  • Wills JW, Srinivas RV, Hunter E (1984) Mutations of the Rous sarcoma virus env gene that affect the transport and subcellular location of the glycoprotein products. J Cell Biol 99: 2011–2023

    PubMed  CAS  Google Scholar 

  • Witte ON, Tsukamoto-Adey A, Weissman IL (1977) Cellular maturation of oncornavirus glycoproteins: topological arrangement of precursor and product forms in cellular membranes. Virology 76: 539–553

    PubMed  CAS  Google Scholar 

  • Wolff L, Ruscetti S (1985) Malignant transformation of erythroid cells in vivo by introduction of a nonreplicating retrovirus vector. Science 228: 1549–1552

    PubMed  CAS  Google Scholar 

  • Wolff L, Tambourin P, Ruscetti S (1986) Induction of the autonomous stage of transformation in eryhroid cells infected with SFFV; helper virus is not required. Virology 152: 272–276

    PubMed  CAS  Google Scholar 

  • Wong PKY, Soong M, MacLeod R, Gallick G, Yuen PH (1983) A group of temperature-sensitive mutants of Moloney leukemia virus which is defective in cleavage of env precursor polypeptide in infected cells also induces hind limb paralysis in newborn CFW/D mice. Virology 125: 513–518

    PubMed  CAS  Google Scholar 

  • Wong PKY, Knupp C, Yuen PH, Soong MM, Zachary JF, Tompkins WAF (1985) ts1 a paralytogenic mutant of Moloney murine leukemia virus TB, has an enhanced ability to replicate in the central nervous system and primary nerve cell culture. J Virol 55: 760–767

    PubMed  CAS  Google Scholar 

  • Wong-Staal F, Shaw GM, Hahn BH, Salahuddin SZ, Popovic M, Markham P, Redfield R, Gallo RC (1985) Genomic diversity of human T-lymphotropic virus type III (HTLV-III). Science 229: 759–762

    PubMed  CAS  Google Scholar 

  • Yoshimura FK, Breda M (1981) Lack of AKR ecotropic provirus amplification in AKR leukemic thymuses. J Virol 39: 808–815

    PubMed  CAS  Google Scholar 

  • Yoshimura FK, Levine KL (1983) AKR thymic lymphomas involving mink cell focus-inducing murine leukemia viruses have a common region of provirus integration. J Virol 45: 576–784

    PubMed  CAS  Google Scholar 

  • Yuen PH, Malehorn D, Knupp C, Wong PKY (1985) A 1.6-kilobase-pair fragment in the genome of the ts1 mutant of Moloney murine leukemia virus TB that is associated with temperature sensitivity, nonprocessing of Pr80env, and paralytogenesis. J Virol 54: 364–373

    PubMed  CAS  Google Scholar 

  • Zarling JM, Morton W, Moran PA, McClure J, Kosowski SG, Hu SL (1986) T-cell responses to human AIDS virus in macaques immunized with recombinant vaccinia viruses. Nature 323: 344–346

    PubMed  CAS  Google Scholar 

  • Zarling JM, Eichberg JW, Moran PA, McClure J, Sridhar P, Hu SL (1987) Proliferative and cytotoxic T cells to AIDS virus glycoproteins in chimpanzees immunized with a recombinant vaccinia virus expressing AIDS virus envelope glycoproteins. J Immunol 139: 988–990

    PubMed  CAS  Google Scholar 

  • Zavada J, Dickson C, Weiss R (1977) Pseudotypes of vesicular stomatitis virus with envelope antigens provided by murine mammary tumor virus. Virology 82: 221–231

    PubMed  CAS  Google Scholar 

  • Zijlstra M, Quint W, Cuypers T, Radaszkiewicz T, Schoenmakers H, DeGoeda R, Melief C (1986) Ecotropic and mink cell focus-forming murine leukemia viruses integrate in mouse T, B, and non-T/non-B cell lymphoma DNA. J Virol 57: 1037–1047

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin · Heidelberg

About this paper

Cite this paper

Hunter, E., Swanstrom, R. (1990). Retrovirus Envelope Glycoproteins. In: Swanstrom, R., Vogt, P.K. (eds) Retroviruses. Current Topics in Microbiology and Immunology, vol 157. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-75218-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-75218-6_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-75220-9

  • Online ISBN: 978-3-642-75218-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics