Skip to main content
Book cover

Retroviruses pp 125–152Cite as

Retroviral RNA Packaging: Sequence Requirements and Implications

  • Conference paper

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 157))

Abstract

Unlike many animal viruses, infection by retroviruses generally does not lead to cessation of host RNA synthesis. Despite the high levels of host RNA in infected cells, the vast majority of retroviral particles contain a precise genomic complex consisting of two molecules of genomic RNA, rather than cellular or subgenomic viral mRNAs. Thus, the retroviral genome must be selected for encapsidation against a high background of cellular RNAs. It is therefore surprising that the retroviral genome is structurally similar to that of cellular mRNA. For instance, both molecules contain a 5′ m7 G cap and several hundred A residues at the 3′ terminus (reviewed in Coffin 1984a, 1985). Viral subgenomic mRNAs are even more similar to genomic RNA. The ability of the retroviral particle to choose correctly genomic RNA from the vast excess of heterologous molecules implies that specific sequences are present within the genome which direct the efficient encapsidation of the correct RNAs. Analysis of spontaneous and engineered mutants of both avian and murine retroviruses has in fact revealed that cis-acting sequences are involved and are present in the retroviral genome.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adam MA, Miller AD (1988) Identification of a signal in a murine retrovirus that is sufficient for packaging of non-retroviral RNA into virions. J Virol 62: 3802–3806

    PubMed  CAS  PubMed Central  Google Scholar 

  • Adkins B, Hunter T (1981) Identification of a packaged cellular mRNA in virions of Rous sarcoma virus. J Virol 39: 471–481

    PubMed  CAS  PubMed Central  Google Scholar 

  • Armentano D, Yu S-F, Kantoff PW, von Ruden T, Anderson WF, Gilboa E (1987) Effect of internal viral sequences on the utility of retroviral vectors. J Virol 61: 1647–1650

    PubMed  CAS  PubMed Central  Google Scholar 

  • Baltimore D (1985) Retroviruses and retrotransposons: the role of reverse transcriptase in shaping the eukaryotic genome. Cell 40: 481–482

    Article  PubMed  CAS  Google Scholar 

  • Bender MA, Palmer TD, Gelinas RE, Miller AD (1987) Evidence that the packaging signal of Moloney murine leukemia virus extends into the gag region. J Virol 61: 1639–1646

    PubMed  CAS  PubMed Central  Google Scholar 

  • Besmer P, Olshevsky D, Baltimore D, Dolberg D, Fan H (1979) Virus-like 30S RNA in mouse cells. J Virol 29: 1168–1176

    PubMed  CAS  PubMed Central  Google Scholar 

  • Biczysko W, Pienkowski M, Solter D, Koprowski H (1973) Virus particles in early mouse embryos. JNCI 51: 1041–1959

    PubMed  CAS  Google Scholar 

  • Biegalke B, Linial M (1987) Retention or loss of v-mil sequences after propagation of MH2 virus in vivo or in vitro. J Virol 61: 1949–1956

    PubMed  CAS  PubMed Central  Google Scholar 

  • Bister K, Jansen HW (1986) Oncogenes in retroviruses and cells: biochemistry and molecular genetics. Adv Cancer Res 47: 99–188

    Article  PubMed  CAS  Google Scholar 

  • Bosselman RA, Hsu R-Y, Bruszewski J, Hu S, Martin F, Nicholson M (1987) Replication-defective chimeric helper proviruses and factors affecting generation of competent virus: expression of Moloney murine leukemia virus structural genes via the metallothionein promoter. Mol Cell Biol 7: 1797–1806

    PubMed  CAS  PubMed Central  Google Scholar 

  • Canaani E, von der Helm K, Duesberg P (1973) Evidence for 30–40S RNA as precursor of the 60–70S RNA of Rous sarcoma virus. Proc Natl Acad Sci USA 70: 401–405

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Chen P-J, Cywinski A, Taylor JM (1985) Reverse transcription of 7S-L RNA by an avian retrovirus. J Virol 54: 278–284

    PubMed  CAS  PubMed Central  Google Scholar 

  • Cheung K-S, Smith RE, Stone MP, Joklik WK (1972) Comparison of immature (rapid) and mature Rous sarcoma virus particles. Virology 50: 851–864

    Article  PubMed  CAS  Google Scholar 

  • Coffin JM (1979) Structure, replication and recombination of retrovirus genomes. J Gen Virol 42: 1–26

    Article  PubMed  CAS  Google Scholar 

  • Coffin JM (1984a) Structure of the retroviral genome. In: Weiss R, Teich N, Varmus H, Coffin J (eds) 2nd edn, Part 1, Cold Spring Harbor Laboratory, Cold Spring Harbor, pp 261–368

    Google Scholar 

  • Coffin JM (1984b) Endogenous viruses. In: Weiss R, Teich N, Varmus H, Coffin J (eds) RNA tumor viruses. 2nd edn, Part 2. Cold Spring Harbor Laboratory, Cold Spring Harbor, pp 1110–1202

    Google Scholar 

  • Coffin JM (1985) Genome structure. In: Weiss R, Teich N, Varmus H, Coffin J (eds) RNA tumor viruses. 2nd edn, Part 2. Cold Spring Harbor Laboratory, Cold Spring Harbor, pp 17–74

    Google Scholar 

  • Cone RD, Mulligan RC (1984) High-efficiency gene transfer into mammalian cells: generation of helper-free recombinant retrovirus with broad mammalian host range. Proc Natl Acad Sci USA 81:6349–6353

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Copeland NG, Hutchison KW, Jenkins NA (1983) Excision of the DBA ecotropic provirus in dilute coat-color revertants of mice occurs by homologous recombination involving the viral LTRs. Cell 33: 379–387

    Article  PubMed  CAS  Google Scholar 

  • Covey SN, Turner DS (1986) Hairpin DNAs of cauliflower mosaic virus generated by reverse transcription in vivo. EMBO J 5: 2763–2768

    PubMed  CAS  PubMed Central  Google Scholar 

  • DeGudicibus SJ, Gentile B, Bhatt RS, Poonian MS, Stacey DW (1986) Studies of retroviral packaging. In: Celis JE, Graessmann A, Loyter A (eds) Microinjection and organelle transplantation techniques. Academic, London, pp 59–65

    Google Scholar 

  • Dickson C, Eisenman R, Fan H, Hunter E, Teich N (1984) Protein biosynthesis and assembly. In: Weiss R, Teich N, Varmus H, Coffin J (eds) RNA tumor viruses 2nd edn, Part I. Cold Spring Harbor Laboratory, Cold Spring Harbor, pp 785–998

    Google Scholar 

  • Dornburg R, Temin HM (1988) Retroviral vector system for the study of cDNA gene formation. Mol Cell Biol 8: 2329–2334

    Google Scholar 

  • Embretson JE, Temin HM (1987) Lack of competition results in efficient packaging of heterologous murine retroviral RNAs and reticuloendotheliosis virus encapsidation-minus RNAs by the reticuloendotheliosis virus helper cell line. J Virol 61: 2675–2683

    PubMed  CAS  PubMed Central  Google Scholar 

  • Fu X, Phillips N, Jentoft J, Tuazon PT, Traugh JA, Leis J (1985) Site-specific phosphorylation of avian retrovirus nucleocapsid protein pp 12 regulates binding to RNA. J Biol Chem 260: 9941–9947

    PubMed  CAS  Google Scholar 

  • Fu X, Katz RA, Skalka AM, Leis J (1988) Site-directed mutagenesis of the avian retrovirus nucleocapsid protein pp 12: mutation which affects RNA binding in vitro blocks viral replication. J Biol Chem 263: 2134–2139

    PubMed  CAS  Google Scholar 

  • Gallis B, Linial M, Eisenman R (1979) An avian oncovirus mutant deficient in genomic RNA: characterization of the packaged RNA as cellular messenger RNA. Virology 94: 146–161

    Article  PubMed  CAS  Google Scholar 

  • Garfinkel DJ, Boeke JD, Fink GR (1985) Ty element transposition: reverse transcriptase and viruslike particles. Cell 42: 507–517

    Article  PubMed  CAS  Google Scholar 

  • Geryk J, Pichrtova J, Guntaka RV, Gowda S, Svoboda J (1986) Characterization of transforming viruses rescued from a hamster tumour cell line harbouring the v-src gene flanked by long terminal repeats. J Gen Virol 67: 2395–2404

    Article  PubMed  CAS  Google Scholar 

  • Gerwin BI, Levin JG (1977) Interactions of murine leukemia virus core components: characterization of reverse transcriptase packaged in the absence of 70S genomic RNA. J Virol 24: 478–488

    PubMed  CAS  PubMed Central  Google Scholar 

  • Goldfarb MP, Weinberg RA (1981) Generation of novel, biologically active Harvey sarcoma viruses via apparent illegitimate recombination. J Virol 38: 136–150

    PubMed  CAS  PubMed Central  Google Scholar 

  • Gorelick RJ, Henderson LE, Hanser JP, Rein A Point mutants of Moloney murine leukemia virus that fail to package viral RNA: evidence for specific RNA recognition by a “zinc finger-like” protein sequence. Proc Nat Acad Sci USA 85: 8420–8424

    Google Scholar 

  • Heidmann T, Heidmann O, Nicolas J-F (1988) An indicator gene to demonstrate intracellular transposition of defective retroviruses. Proc Natl Acad Sci USA 85: 2219–2223

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Herman SA, Coffin JM (1986) Differential transcription from the long terminal repeats of integrated avian leukosis virus. J Virol 60: 497–505

    PubMed  CAS  PubMed Central  Google Scholar 

  • Herman SA, Coffin JM (1987) Efficient packaging of readthrough RNA in ALV: implications for oncogene transduction. Science 236: 845–848

    Article  PubMed  CAS  Google Scholar 

  • Huang TTF, Calarco PG (1981) Evidence of cell surface expression of intracisternal A particle-associated antigens during early mouse development. Dev Biol 82: 388–392

    Article  PubMed  Google Scholar 

  • Hunter E (1978) The mechanism for genetic recombination in the avian retroviruses. Curr Top Microbiol Immunol 79: 295–309

    Article  PubMed  CAS  Google Scholar 

  • Ikawa Y, Ross J, Leder P (1974) An association between globin messenger RNA and 60S RNA derived from Friend leukemia virus. Proc Natl Acad Sci USA 71: 1154–1158

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Jagadeeswaran P, Forget BG, Weissman SM (1981) Short interspersed repetitive DNA elements in eukaryotes: transposable NA elements generated by reverse transcription of RNA pol III transcripts? Cell 26: 141–142

    Article  PubMed  CAS  Google Scholar 

  • Junghans RP, Boone LR, Skalka AM (1982) Retroviral DNA H structures: displacement-assimilation model of recombination. Cell 30: 53–62

    Article  PubMed  CAS  Google Scholar 

  • Katz RA, Terry RW, Skalka AM (1986) A conserved cis-acting sequence in the 5′ leader of avian sarcoma virus RNA is required for packaging. J Virol 59: 163–167

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kawai S, Koyama T (1984) Characterization of a Rous sarcoma virus mutant defective in packaging its own genomic RNA: biological properties of mutant TK15 and mutant-induced transformants. J Virol 51: 147–153

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kiessling A, Crowell R, Connell R (1987) Sperm-associated retrovirus in the mouse epididymus. Proc Natl Acad Sci 84: 8667–8671

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Koyama T, Harada F, Kawai S (1984) Characterization of a Rous sarcoma virus mutant defective in packaging its own genomic RNA: biochemical properties of mutant TK15 and mutant-induced‘transformants’. J Virol 51: 154–162

    PubMed  CAS  PubMed Central  Google Scholar 

  • Leis J, Baltimore D, Bishop JM, Coffin J, Fleissner E, Goff SP, Oroszlan S, Robinson H, Skalka AM, Temin HM, Vogt VM (1988) Standardized and simplified nomenclature for proteins common to all retroviruses. J Virol 62: 1808–1809

    PubMed  CAS  PubMed Central  Google Scholar 

  • Lever A, Gottlinger H, Haseltine W and Sodroski J (1989) Identification of a sequence required for efficient packaging of human immunodeficiency virus type 1 RNA into virions. J Vir 63: 4085–4087

    CAS  Google Scholar 

  • Levin JG, Rosenak MJ (1976) Synthesis of murine leukemia virus proteins associated with virions assemble in actinomycin D-treated cells: evidence for persistence of viral messenger RNA. Proc Natl Acad Sci USA 73: 1154–1158

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Levin JG, Seidman JG (1979) Selective packaging of host tRNAs by murine leukemia virus particles does not require genomic RNA. J Virol 29: 328–335

    PubMed  CAS  PubMed Central  Google Scholar 

  • Levin JG, Grimley PM, Ramseur JM, Berezesky IK (1974) Deficiency on 60 to 70S RNA in murine leukemia virus particles assembled in cells treated with Actinomycin D. J Virol 14: 152–161

    PubMed  CAS  PubMed Central  Google Scholar 

  • Linial M (1981) Transfer of defective avian tumor virus genomes by a Rous sarcoma virus RNA packaging mutant. J Virol 38: 380–382

    PubMed  CAS  PubMed Central  Google Scholar 

  • Linial M (1987) Creation of a processed pseudogene by retroviral infection. Cell 49: 93–102

    Article  PubMed  CAS  Google Scholar 

  • Linial M, Blair D (1984) Genetics of Retroviruses. In: Weiss R, Teich N, Varmus H, Coffin J (eds) RNA tumor viruses. Cold Spring Harbor Laboratory, Cold Spring Harbor, pp 650–783

    Google Scholar 

  • Linial M, Medeiros E, Hayward WS (1978) An avian oncovirus mutant (SE21Qlb) deficient in genomic RNA: biological and biochemical characterization. Cell 15: 1371–1381

    Article  PubMed  CAS  Google Scholar 

  • Mann R, Baltimore D (1985) Varying the position of a retrovirus packaging sequence results in the encapsidation of both unspliced RNAs. J Virol 54: 401–407

    PubMed  CAS  PubMed Central  Google Scholar 

  • Mann R, Mulligan RC, Baltimore D (1983) Construction of a retrovirus packaging mutant and its use to produce helper-free defective retrovirus. Cell 33: 153–159

    Article  PubMed  CAS  Google Scholar 

  • Markowitz D, Goff S, Bank A (1988) A safe packaging line for gene transfer: separating viral genes on two different plasmids. J Virol 62: 1120–1124

    PubMed  CAS  PubMed Central  Google Scholar 

  • Martin P, Henry C, Ferre F, Bechade C, Begue A, Calothy G, Debuire B, Stehelin D, Saule S (1986) Characterization of a myc-containing avian retrovirus generated by the propagation of an MH2 viral subgenomic RNA. J Virol 57: 1191–1194

    PubMed  CAS  PubMed Central  Google Scholar 

  • Meric C, Darlix JL, Spahr PF (1984) It is Rous sarcoma virus p12 and not p19 that binds tightly to Rous sarcoma virus RNA. J Mol Biol 173: 531–538

    Article  PubMed  CAS  Google Scholar 

  • Meric C, Goff SP (1989) Characterization of Moloney murine leukemia virus mutants with single-amino-acid substitutions in the Cys-his box of the nucleocapsid protein. J Vir 63: 1558–1568

    CAS  Google Scholar 

  • Meric C, Spahr P-F (1986) Rous sarcoma virus nucleic acid-binding protein p12 is necessary for viral 70S RNA dimer formation and packaging. J Virol 60: 450–459

    PubMed  CAS  PubMed Central  Google Scholar 

  • Miller AD, Buttimore C (1986) Redesign of retrovirus packaging cell lines to avoid recombination to helper virus production. Mol Cell Biol 6: 2895–2902

    PubMed  CAS  PubMed Central  Google Scholar 

  • Miller AD, Verma IM (1984) Two base changes restore infectivity to a noninfectious molecular clone of Moloney murine leukemia virus (pMLV-1). J Virol 49: 214–222

    PubMed  CAS  PubMed Central  Google Scholar 

  • Miller AD, Law MF, Verma IM (1985) Generation of helper-free amphotropic retroviruses that transduce a dominant-acting methotrexate-resistant DHFR gene. Mol Cell Biol 5: 431–437

    PubMed  CAS  PubMed Central  Google Scholar 

  • Miller AD, Trauber DR, Buttimore C (1986) Factors involved in the production of helper virus-free retrovirus vectors. Somatic Cell Mol Genet 12: 175–183

    Article  CAS  Google Scholar 

  • Murphy J, Goff SP Construction and analysis of deletion mutations in the U5 region of Moloney murine leukemia virus: effects on RNA packaging and reverse transcription. J Vir 63: 319–327

    Google Scholar 

  • Nishizawa M, Koyama T, Kawai S (1985) Unusual feature of the leader sequence of Rous sarcoma virus packaging mutant TK15. J Virol 55: 881–885

    PubMed  CAS  PubMed Central  Google Scholar 

  • Nishizawa M, Koyama T, Kawai S (1987) Frequent segregation of more defective variants from a Rous sarcoma virus packaging mutant TK15. J Virol 61: 3208–3213

    PubMed  CAS  PubMed Central  Google Scholar 

  • Norton PA, Coffin JM (1985) Bacterial β-galactosidase as a marker of Rous sarcoma virus gene expression and replication. Mol Cell Biol 5: 281–290

    PubMed  CAS  PubMed Central  Google Scholar 

  • Patschinsky T, Jansen HW, Blocker H, Frank R, Bister K (1986) Structure and transforming function of transduced mutant alleles of the chicken c-myc gene. J Virol 59: 341–353

    PubMed  CAS  PubMed Central  Google Scholar 

  • Peters GG, Hu J (1980) Reverse transcriptase as the major determinant for selected packaging of tRNAs into avian sarcoma virus particles. J Virol 36: 692–700

    PubMed  CAS  PubMed Central  Google Scholar 

  • Pugatsch T, Stacey DW (1983) Identification of a sequence likely to be required for avian retroviral packaging. Virology 128: 505–511

    Article  PubMed  CAS  Google Scholar 

  • Rodland KD, Brown AMC, Magun B (1987) Individual mouse VL30 elements transferred to rat cells by viral pseudotypes retain their responsiveness to activators of protein kinase C. Mol Cell Biol 7: 2296–2298

    PubMed  CAS  PubMed Central  Google Scholar 

  • Sawyer RC, Hanafusa H (1979) Comparison of the small RNAs of polymerase-deficient and polymerase-positive Rous sarcoma virus and another species of avian retrovirus. J Virol 29: 863–871

    PubMed  CAS  PubMed Central  Google Scholar 

  • Schwartzberg P, Colicelli J, Goff SP (1983) Deletion mutants of Moloney murine leukemia virus which lack glycosylated gag protein are replication competent. J Virol 46: 538–546

    PubMed  CAS  PubMed Central  Google Scholar 

  • Scolnick EM, Vass WC, Howk RS, Duesberg PH (1979) Defective retrovirus-like 30S RNA species of rat and mouse cells are infectious if packaged by type C helper virus. J Virol 29: 964–972

    PubMed  CAS  PubMed Central  Google Scholar 

  • Shank PR, Linial M (1980) Avian oncovirus mutant (SE21Q1b) deficient in genomic RNA: characterization of a deletion in the provirus. J Virol 36: 450–456

    PubMed  CAS  PubMed Central  Google Scholar 

  • Sherwin SA, Rapp UR, Benveniste RE, Sen A, Todaro GJ (1978) Rescue of endogenous 30S retroviral sequences from mouse cells by baboon type C virus. J Virol 26: 257–264

    PubMed  CAS  PubMed Central  Google Scholar 

  • Shimotohno K, Mizutani S, Temin HM (1980) Sequence of retrovirus provirus resembles that of bacterial transposable elements. Nature 285: 550–554

    Article  PubMed  CAS  Google Scholar 

  • Shinnick TM, Lerner RA, Sutcliffe JG (1981) Nucleotide sequence of Moloney murine leukemia virus. Nature 293: 543–548

    Article  PubMed  CAS  Google Scholar 

  • Sorge JD, Ricci W, Hughes SH (1983) cis-Acting RNA packaging locus in the 115-nucleotide direct repeat of Rous sarcoma virus. J Virol 48: 667–675

    PubMed  CAS  PubMed Central  Google Scholar 

  • Sorge JD, Wright D, Erdman VD, Cutting AE (1984) Amphotropic retrovirus vector system for human cell gene transfer. Mol Cell Biol 4: 1730–1737

    PubMed  CAS  PubMed Central  Google Scholar 

  • Stoker AW, Bissell MJ (1988) Development of avian sarcoma and leukosis virus-based vector-packaging cell lines. J Virol 62: 1008–1015

    PubMed  CAS  PubMed Central  Google Scholar 

  • Stoltzfus CM, Kuhnert LK (1979) Evidence for the identity of shared 5′-terminal sequences between genomic RNA and subgenomic mRNAs of B77 avian sarcoma virus. J Virol 32: 536–545

    PubMed  CAS  PubMed Central  Google Scholar 

  • Svoboda J, Dvorak M, Guntaka R, Geryk J (1986) Transmission of (LTR, v-src, LTR) without recombination with a helper virus. Virology 153: 314–317

    Article  PubMed  CAS  Google Scholar 

  • Taylor JM, Cywinski A (1984) A defective retrovirus particle (SE21Q1b) packages and reverse transcribes cellular RNA, utilizing tRNA-like primers. J Virol 51: 267–271

    PubMed  CAS  PubMed Central  Google Scholar 

  • Temin H (1985) Reverse transcription in the eukaryotic genome: retroviruses, pararetroviruses, retrotransposons and retranscripts. Mol Biol Evol 2: 455–468

    PubMed  CAS  Google Scholar 

  • Ullu E, Murphy S, Melli M (1982) Human 7SL RNA consists of a 140 nucleotide middle-repetitive sequence inserted in an Alu sequence. Cell 29: 195–202

    Article  PubMed  CAS  Google Scholar 

  • Van Arsdell SW, Denison RA, Bernstein LB, Weiner AM Manser T, Gesteland RF (1981) Direct repeats flank three small nuclear RNA pseudogenes in the human genome. Cell 26: 11–17

    Article  PubMed  Google Scholar 

  • Varmus H, Swanstrom R (1984) Replication of Retroviruses. In: Weiss R, Teich N, Varmus H, Coffin J (eds) RNA tumor viruses. Cold Spring Harbor Laboratory, Cold Spring Harbor, pp 369–512

    Google Scholar 

  • Voynow S, Coffin JM (1985) Truncated gag-related proteins are produced by large deletion mutants of Rous sarcoma virus and form virus particles. J Virol 55: 79–85

    PubMed  CAS  PubMed Central  Google Scholar 

  • Walter P, Blobel G (1982) Signal recognition particle contains a 7S RNA essential for protein translocation across the endoplasmic reticulum. Nature 288: 691–698

    Article  Google Scholar 

  • Wang L-H, Stacey DW (1982) Participation of subgenomic retroviral mRNAs in recombination. J Virol 41: 919–930

    PubMed  CAS  PubMed Central  Google Scholar 

  • Watanabe S, Temin HM (1979) Encapsidation sequences for spleen necrosis virus, an avian retrovirus, are between the 5′ long terminal repeat and the start of the gag gene. Proc Natl Acad Sci USA 79: 5986–5990

    Article  Google Scholar 

  • Watanabe S, Temin HM (1983) Construction of a helper cell line for avian reticuloendotheliosis virus cloning vectors. Mol Cell Biol 3: 2241–2249

    PubMed  CAS  PubMed Central  Google Scholar 

  • Weiner AM, Deininger PL, Efstratiadis A (1986) Nonviral retroposons: genes, pseudogenes, and transposable elements generated by the reverse flow of genetic information. Annu Rev Biochem 55: 631–661

    Article  PubMed  CAS  Google Scholar 

  • Weiss R (1984) Experimental biology and assay of RNA tumor viruses. In: Weiss R, Teich N, Varmus H, Coffin J (eds) RNA tumor viruses. Cold Spring Harbor Laboratory, Cold Spring Harbor, pp 209–260

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin · Heidelberg

About this paper

Cite this paper

Linial, M.L., Miller, A.D. (1990). Retroviral RNA Packaging: Sequence Requirements and Implications. In: Swanstrom, R., Vogt, P.K. (eds) Retroviruses. Current Topics in Microbiology and Immunology, vol 157. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-75218-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-75218-6_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-75220-9

  • Online ISBN: 978-3-642-75218-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics