Advertisement

Die Gewinnung, Auswertung und Archivierung verläßlicher Umweltinformationen am Beispiel von TOPOGRAMM

  • Ullrich B. Kampffmeyer
  • Heiner Benking
Part of the Informatik-Fachberichte book series (INFORMATIK, volume 228)

Abstract

Collection, Processing, and Documentation of Reliable Environmental Informations - Airborne close-range sensing data volumes require new data management concepts Computer-aided methods provide today the possibility to handle, process, analyse, and retrieve large information volumes. Both, remote and close-range sensing, collect extreme quantities of data, but with different focus. Therefore, different processing strategies need to be developed to combine and handle 2-dimensional spectral data covering wide areas or analog stereo models of small regions. TOPOGRAMM uses both, digital and analog acquisition and, merges local and global scopes combining conventional aerial photogrammetry with high precision measurements.

The session is focussing on processing of vector and raster data, mass information storage, data banks, archiving, analysis, and documentation procedures. It describes existing projects and pilot applications.

The term TOPOGRAMM stands for an innovative system to collect and process environmental and geo-scientific data. After the first close-range metric sensing proved workable, specialized Computer assisted procedures were developed to handle the new quality of data. Acquisition and stereo processing, combining micro-and meso-scales and different disciplines, requires new approaches and the exploitation of Visual inspection and differentiation powers. Digital and analog superimposition in high fidelity environments is another challenge.

A navigated sensor-platform acquires point and area, raster and density informations. Their combination promises new insights and allows interdisciplinary approaches. The outstanding quality of the collected data results from repetition, selection, and measurements. This “reliable” information is object and milieu related and can be obtained at any time by a Visual “stereo” access to the archived models.

Objective dimensional informations are processed in Computer systems to portray the spatial variability and analyse, model, map, and archive. Specific procedures are governed by media restrictions. Film, as one source media with high data capacity, competes with digital storage media, holding raster data and data-bases of geographic information systems (GIS).

The system is suitable for engineering surveys and quantity surveying. The given accuracy can be favourably used for other mapping tasks or environmental applications like bio-monitoring or erosion protection.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Beerenwinkel, R., Bonjour, J.D., Hersch, R.D., Kölbl, O.: Real-Time Stereo Image Injection for Photogram- metric Plotting, IAPRS, Band 26, Teil 4, S.99–109, Edinburgh, 1986.Google Scholar
  2. Benking, H.: Möglichkeiten und Grenzen der Datenpräsentation durch Computergrafik im Umweltbereich, Jaeschke, A; Page, B. (ed.), Informatik Fachberichte Band 170, Informatik im Umweltschutz, 2. Symposium, Springer Verlag, Karlsruhe 1988.Google Scholar
  3. Bestenreiner, F.: Vom Punkt zum Bild - Entwicklung, Stand und Zukunftsaspekte der Bildtechnik. Karlsruhe, 1988.Google Scholar
  4. Borg, H. R., Rhodenburg, H.: Transferable Parametrization Methods for Distributed Hydrological and Agroecological catchment models, CATENA, Band 13, S. 99–117, Braunschweig 1986.Google Scholar
  5. Braedt, J. et al.: Komponenten eines Umweltinformationssystems für Bayern. Arge Alp, 1. Sitzung, Bayr. Staatsministerium für Landesentwicklung und Umweltfragen, München, 1988.Google Scholar
  6. Burrough, P. A.: Principles of Geographie Information Systems for Land Resources Assessment. Oxford Science Publications, Clarendon Press, Oxford, Utrecht 1986.Google Scholar
  7. Carol, H.: Zur Theorie der Geographie. Mitteilungen der österreichischen Gesellschaft, Band 105. Heft I/II, Wien 1963.Google Scholar
  8. Castri, di, F.; Hadley, M.: Enhancing the Credibility of Ecology: Interacting Along and Across Hierarchical Scales. GEO-JOURNAL, Band 17.1, S. 5–35, Kluwer Academic Publishers, Dordrecht,Boston,London, July 1988.Google Scholar
  9. Dangermond, J.: A Review of Digital Data Commonly Available and Some of the Punctial Problems of Entering them into a GIS. ESRI publication, Redlands, 1987.Google Scholar
  10. Ebner, H.f Reinhardt, W.: Progressive Sampling and DEM Interpolation by Finite Elements, S. 172–178, BuL 3a/84, Wichmann Verlag Karlsruhe, 1984.Google Scholar
  11. Ebner, H., Reinhardt, W., Hößler, R.: Generation, Management, and Utilization of High Fidelity Digital Terrain Models. Proc. IAPRS, Badn 27, B11 Teil III, S. 556–566, Kyoto, 1988.Google Scholar
  12. Glawion, Rainer: Geoökologische Kartierung und Bewertung. Geowissenschaften 6, 287–295, 1988.Google Scholar
  13. Göpfert, W.: Raumbezogene Informationssysteme. Wichmann Verlag, Karlsruhe 1987.Google Scholar
  14. Hobbie.D., Rüdenauer, H.: The ZEISS PLANICOMP Family: A User Oriented Solution for Practical Requirements. S. 134–142, BuL 3a/84, Wichmann Verlag Karlsruhe, 1984.Google Scholar
  15. Kampffmeyer, U,; Optimierte Archivierung als Basis für die Informationsverarbeitung der Zukunft. Symposium “Informationen speichern und nutzen”, Landesamt für Elektronische Datenverarbeitung, Berlin, 1989.Google Scholar
  16. Lee, H., Wade, G.: Imaging Technology. IEEE Press, New York, 1986.Google Scholar
  17. Meentemeyer, V.; Box, E. O.: Scale effects in landscape studies. Goigel Turner, M. (ed.), Landscape hetereogeneity and disturbance, S. 15–34. Ecological Studies 64. Springer Verlag, New York 1987.Google Scholar
  18. Molenaar, M.: Single Valued Vector Maps - A concept in Geographie Information Systems GIS, Band 2, Nummer 1, S. 18–26, Wichmannn Verlag, Karlsruhe 1989.Google Scholar
  19. Mounsey H., Tomlinson, R.: Building Databases for global science, Taylor & Francis, London, New York, Philadelphia, 1988.Google Scholar
  20. Odual, P.A., Muraya, P., Fernandes, E.C.M., Nair, P.K.R.: The Agroforestry Systems Database at ICRAF. Agroforestry Systems 6, S. 253–270, Dordrecht, 1988.Google Scholar
  21. Raper, J.F.: Designing an integrated two- and three dimensional geoscientific mapping system. Proceedings of EUROCARTO SEVEN, Environmental Applications of Digital Mapping, ITC Publications Nr. 8, S.3–10, Enschede, 1988.Google Scholar
  22. Schmidt-Falkenberg, H.: Datenfluß und Geo-Information. Geo-Informations-Systeme, Wichmann Verlag, Karlsruhe, 1988.Google Scholar
  23. Schmidt v. Braun, H., Kampffmeyer, U.: TOPOGRAMM, ein System zur Gewinnung verläßlicher Umweltdaten aus der Sicht der Datenverarbeitung. Proceedings der Konferenz EDV & DOKUMENTE, S. 24.1–24. 12, München, Rödermark, 1988.Google Scholar
  24. Uffenkamp, D.: Improvement of Digital Mapping with Graphics Image Superimposition, IAPRS, Band 26. Teil 3 /2, S. 665–671, Rovaniemi, 1986.Google Scholar
  25. Vinken, R.: Digital geoscientific maps: a priority program of the German Society for the Advancement of Scientific Research. Mathematical Geology 18, S. 237–246, 1986.CrossRefGoogle Scholar
  26. Wester-Ebbinghaus, W. et. al. (Hrsg. Deutsches Bergbau-Museum Photogrammetrie): Luftaufnahmen aus geringer Flughöhe. Schriftenreihe Nr. 41, Bochum 1987.Google Scholar
  27. Wittmann, O.: Der Bodenkataster Bayern: Bodeninformationssystem für Standortkunde, Boden- und Umweltschutz. Proc. ISSS-AISS-IBG, XIII. CONGRESS, Hamburg 1986.Google Scholar
  28. Wrobel, B.: Digitale Bildzuordnung durch Facetten mit Hilfe von Objektraummodellen. BuL, Wichmann Verlag, Karlsruhe 1987.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • Ullrich B. Kampffmeyer
    • 1
  • Heiner Benking
    • 2
  1. 1.ACS Systemberatung GmbHHamburg 36Germany
  2. 2.VisselhövedeGermany

Personalised recommendations