Skip to main content

Covariance Ladder Algorithms

  • Chapter
Linear Prediction Theory

Part of the book series: Springer Series in Information Sciences ((SSINF,volume 21))

Abstract

The ladder algorithms presented in Chap. 7 were based on the recursive computation of transversal predictor parameters, which serve as intermediate recursion variables. This type of ladder algorithm employed the Levinson recursion for a conversion between the transversal predictor parameters and the ladder reflection coefficients. Although the ladder reflection coefficients are known to have a lower variance than the transversal predictor parameters, this advantage is compensated by the Levinson recursion, which requires a high dynamic range for the computation of the intermediate transversal predictor parameters. In fact, the intermediate transversal predictor parameters are unbounded quantities, i.e., they may attain large values, depending on the data. This makes the fixed-point implementation of Levinson type algorithms quite a difficult task.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

Chapter 8

  1. J. LeRoux, C. Gueguen: A fixed-point computation of partial correlation coefficients. IEEE Trans. ASSP 25, 257–259 (1977)

    Article  Google Scholar 

  2. A. Cumani: On a covariance lattice algorithm for linear prediction. Proc. IEEE Int. Conf. on ASSP, Paris (1982) pp. 651–654

    Google Scholar 

  3. J. Makhoul: Stable and efficient lattice methods for linear prediction. IEEE Trans. ASSP 25, 423–428 (1977)

    Article  MATH  Google Scholar 

  4. P. Strobach: Pure order recursive least-squares ladder algorithms. IEEE Trans. ASSP 34, 880–897 (1986)

    Article  Google Scholar 

  5. P. Strobach: A new approach to the least-squares ladder estimation algorithm. Proc. IASTED Int. Symp. Appl. Signal Proc. Digital Filtering, Paris (1985) pp. 37–40

    Google Scholar 

  6. J. Sokat, P. Strobach: A new class of pure order recursive ladder algorithms. Proc. IEEE Int. Workshop on Digital Signal Processing, Stanford Sierra Lodge, Tahoe, CA (1988)

    Google Scholar 

  7. J. Sokat: The split generalized LeRoux-Gueguen algorithm for least-squares problems. Proc. Int. Symp. on Signals, Systems, and Electronics, URSI, Erlangen (Sept. 1989) to appear

    Google Scholar 

  8. P. Strobach: Efficient covariance ladder algorithms for finite arithmetic applications. Signal Processing 13, 29–70 (1987)

    Article  MathSciNet  Google Scholar 

  9. N. Levinson: The Wiener RMS (root-mean-square) error criterion in filter design and prediction. J. Math. Phys. 25, 261–278 (1947)

    MathSciNet  Google Scholar 

  10. J. Durbin: The fitting of time series models. Rev. Int. Stat. 28, 233–244 (1960)

    Article  MATH  Google Scholar 

  11. J. Heinhold: Einführung in die Höhere Mathematik (Carl Hanser, München 1976)

    Google Scholar 

  12. J.P. Burg: Maximum Entropy Spectral Analysis. Ph.D. Dissertation, Stanford University, Stanford, CA (1975)

    Google Scholar 

  13. J.D. Markel, A.H. Gray: Linear Prediction of Speech, Communications and Cybernetics, Vol. 12 (Springer, Berlin, Heidelberg 1976)

    Book  MATH  Google Scholar 

  14. U. Grenander, G. Szegö: Toeplitz Forms and Their Applications (California Press, Berkeley, CA 1958)

    MATH  Google Scholar 

  15. P. Delsarte, Y. Genin: On the splitting of classical algorithms in linear prediction theory. IEEE Trans. ASSP 35, 645–653 (1987)

    Article  Google Scholar 

  16. H. Krishna: New split Levinson, Schur, and lattice algorithms for digital signal processing. IEEE Int. Conf. on ASSP, New York (1988) pp. 1640–1642

    Google Scholar 

  17. I. Schur (1917): Über Potenzreihen die im Innern des Einheitskreises beschränkt sind. J. Reine Angew. Math. 147, 205–232; ibid. 148, 122–145 (1917)

    Article  Google Scholar 

  18. P. Strobach: A fast recursive approach to FIR system identification. Proc. EUSIPCO-86, The Hague (1986) pp. 1055–1058

    Google Scholar 

  19. P. Strobach: Recursive covariance ladder algorithms for ARMA system identification. IEEE Trans. ASSP 36, 560–580 (1988)

    Article  MATH  Google Scholar 

  20. S.Y. Kung, Y.H. Hu: A highly concurrent algorithm and pipelined architecture for solving Toeplitz systems. IEEE Trans. ASSP 31, 66–76 (1983)

    Article  MATH  ADS  Google Scholar 

  21. I.C. You, Y.H. Hu, W.S. Feng: A novel implementation of pipelined Toeplitz system solver. Proc. IEEE 74, 1463–1464 (1986)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Strobach, P. (1990). Covariance Ladder Algorithms. In: Linear Prediction Theory. Springer Series in Information Sciences, vol 21. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-75206-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-75206-3_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-75208-7

  • Online ISBN: 978-3-642-75206-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics