Skip to main content

Recursive Least-Squares Transversal Algorithms

  • Chapter
Linear Prediction Theory

Part of the book series: Springer Series in Information Sciences ((SSINF,volume 21))

Abstract

In Chap. 2, we discussed the recursive laws of the Normal Equations, and in Chap. 4, we saw how these properties can be used to obtain fast processing schemes for solving the Normal Equations in the recursive case based on the Givens reduction. This chapter is devoted to the recursive least-squares (RLS) algorithms based on a transversal predictor structure. Contrary to the order in this book, recursive solutions of the Normal Equations were first investigated for the case of a transversal prediction error filter. The first commonly recognized algorithm of this type was derived by Godard [5.1] in 1974. But the RLS algorithm was apparently found independently by several authors. The earliest reference seems to be Plackett [5.2]. The RLS algorithm exploits the fact that an actual solution of the Normal Equations can be computed recursively from the previous (one time-step delayed) solution plus some update information, which depends on the actual (incoming) process sample. Therefore, the RLS algorithm exhibits the structure of a Kalman filter [5.3,4]. See also Chap. 10 for a discussion of the relationships between parameter estimation and Kalman filter theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

Chapter 5

  1. D. Godard: Channel equalization using a Kalman filter for fast data transmission. IBM J. Res. Dev. 18, 267–273 (1974)

    Article  MATH  Google Scholar 

  2. R.L. Plackett: Some theorems in least squares. Biometrika 37, 149 (1950)

    MATH  MathSciNet  Google Scholar 

  3. R.E. Kalman: A new approach to linear filtering and prediction problems. J. Basic Eng. 82, 35–45 (1960)

    Article  Google Scholar 

  4. M.D. Srinath, P.K. Rajasekaran: An Introduction to Statistical Signal Processing with Applications (Wiley, New York 1979)

    Google Scholar 

  5. L. Ljung, M. Morf, D.D. Falconer: Fast calculation of gain matrices for recursive estimation schemes. Int. J. Control 27, 1–19 (1978)

    Article  MathSciNet  Google Scholar 

  6. T.C. Hsia: System Identification (Lexington Books, Lexington, MA 1977)

    Google Scholar 

  7. L. Ljung, T. Söderström: Theory and Practice of Recursive Identification (MIT Press, Cambridge, MA 1983)

    MATH  Google Scholar 

  8. J. Sherman, W.J. Morrison: Adjustment of an inverse matrix corresponding to the changes in the elements of a given column or a given row of the original matrix. Ann. Math. Stat. 20, 621 (1949)

    Google Scholar 

  9. J.M. Cioffi, T. Kailath: Fast, recursive least-squares transversal filters for adaptive filtering. IEEE Trans. ASSP 32, 304–337 (1984)

    Article  MATH  Google Scholar 

  10. G. Carayannis, D. Manolakis, N. Kalouptsidis: A fast sequential algorithm for least-squares filtering and prediction. IEEE Trans. ASSP 31, 1394–1402 (1983)

    Article  MATH  Google Scholar 

  11. N. Kalouptsidis, G. Carayannis, D. Manolakis: A fast covariance type algorithm for sequential LS filtering and prediction. IEEE Trans. Autom. Control 29, 752–755 (1984)

    Article  MATH  Google Scholar 

  12. B. Widrow, M.E. Hoff, Jr.: Adaptive switching circuits. Weston Conf. Rec, IRE, Part 4, 96–104 (1960)

    Google Scholar 

  13. B. Widrow, J.M. McCool, M.G. Larimore, C.R. Johnson: Stationary and nonstationary learning characteristics of the LMS adaptive filter. Proc. IEEE 64, 1151–1161 (1976)

    Article  MathSciNet  Google Scholar 

  14. B. Widrow, S.D. Stearns: Adaptive Signal Processing (Prentice-Hall, Englewood Cliffs, NJ 1985)

    MATH  Google Scholar 

  15. J.E. Potter: New Statistical Formulas. Memo 40, Instrumentation Laboratory, Massachusetts Institute of Technology (1963)

    Google Scholar 

  16. G. Kubin: Stabilization of the RLS algorithm in the absence of persistent excitation. Proc. Int. Conf. on ASSP, New York (1988) pp. 1369–1372

    Google Scholar 

  17. G.J. Bierman: Factorization Methods for Discrete Sequential Estimation (Academic, New York 1977)

    MATH  Google Scholar 

  18. M. Morf: Fast Algorithms for Multivariable Systems. Ph.D. Dissertation, Stanford University, Stanford, CA (1974)

    Google Scholar 

  19. M. Morf, T. Kailath, L. Ljung: Fast algorithms for recursive identification. Proc. IEEE Conf. Dec. Control, 916–921 (1976)

    Google Scholar 

  20. E. Eleftheriou, D.D. Falconer: Tracking properties and steady-state performance of RLS adaptive filter algorithms. IEEE Trans. ASSP 34, 1097–1110 (1986)

    Article  Google Scholar 

  21. J.M. Cioffi: Fast Transversal Filters for Communications Applications. Ph.D. Dissertation, Stanford University, Stanford, CA (1984)

    Google Scholar 

  22. J.M. Cioffi, T. Kailath: Windowed fast transversal filters adaptive algorithms with normalization. IEEE Trans. ASSP 33, 607–625 (1985)

    Article  Google Scholar 

  23. C. Samson: A unified treatment of fast Kalman algorithms for identification. Int. J. Control 35, 909–934 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  24. M.L. Honig, D.G. Messerschmitt: Adaptive Filters (Cluwer, Boston, MA 1984)

    MATH  Google Scholar 

  25. S.T. Alexander: Adaptive Signal Processing: Theory and Applications (Springer, New York 1986)

    MATH  Google Scholar 

  26. D.T.L. Lee: Canonical Ladder Form Realizations and Fast Estimation Algorithms. Ph.D. Dissertation, Stanford University, Stanford, CA (1980)

    Google Scholar 

  27. N.J. Bershad: On the optimum gain parameter in LMS adaptation. IEEE Trans. ASSP 35, 1065–1067 (1987)

    Article  Google Scholar 

  28. N.J. Bershad: Behavior of ε-normalized LMS algorithm with Gaussian input. IEEE Trans. ASSP 35, 636–644 (1987)

    Article  Google Scholar 

  29. N.J. Bershad, P.L. Feintuch: A normalized frequency domain LMS adaptive algorithm. IEEE Trans. ASSP 34, 452–461 (1986)

    Article  Google Scholar 

  30. C.F. Cowan, P.M. Grant: Adaptive Filters (Prentice-Hall, Englewood Cliffs, NJ 1985)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Strobach, P. (1990). Recursive Least-Squares Transversal Algorithms. In: Linear Prediction Theory. Springer Series in Information Sciences, vol 21. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-75206-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-75206-3_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-75208-7

  • Online ISBN: 978-3-642-75206-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics