Skip to main content

Recursive Least-Squares Using the QR Decomposition

  • Chapter
  • 230 Accesses

Part of the book series: Springer Series in Information Sciences ((SSINF,volume 21))

Abstract

In Chap. 3, we treated the nonrecursive solution of the Normal Equations as a batch processing least-squares problem. In many applications, like recursive identification and adaptive filtering, we are interested in a recursive solution of the Normal Equations such that given the solution at time t−1, we may compute the updated version of this solution at time t upon the arrival of new data. Algorithms of this type are known as recursive least-squares (RLS) algorithms. As mentioned in Chap. 2, we can exploit the recursive properties of the Normal Equations, which we have discussed, to derive recursive O(p2) or even fast recursive O(p) algorithms for calculating the updated solution of the Normal Equations at consecutive time steps of observation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

Chapter 4

  1. C.L. Lawson, R.J. Hanson: Solving Least-Squares Problems (Prentice Hall, Englewood Cliffs, NJ 1974)

    MATH  Google Scholar 

  2. W.M. Gentleman: Least-squares computation by Givens transformations without square roots. J. Inst. Math. Appl. 12, 329–336 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  3. J.W. Givens: Numerical computation of the characteristic values of a real symmetric matrix. Oak Ridge National Laboratory, ORNR 1574, Internal Report (1954)

    MATH  Google Scholar 

  4. H.T. Kung, W.M. Gentleman: Matrix triangularization by systolic arrays. Proc. SPIE, Real-Time Signal Processing IV, 298, 16 (1981)

    Google Scholar 

  5. J. McWhirter: Recursive least-squares minimization using a systolic array. Proc. SPIE, Real-Time Signal Processing VI, 431, 18–26 (1983)

    Google Scholar 

  6. H.J. Larson, B.O. Shubert: Probabilistic Models in Engineering Sciences, Volume II: Random Noise, Signals, and Dynamic Systems (Wiley, New York 1979)

    Google Scholar 

  7. H.T. Kung: Why systolic architectures. IEEE Computer 15, 37–46 (1982)

    Article  Google Scholar 

  8. S.-Y. Kung, H.J. Whitehouse, T. Kailath (eds.): VLSI and Modern Signal Processing (Prentice-Hall, Englewood Cliffs, NJ 1985)

    Google Scholar 

  9. J.E. Valder: The CORDIC trigonometric computing technique. IEEE Trans. Electromagn. Compat. 9, 227–231 (1960)

    Google Scholar 

  10. K. Hwang: Computer Arithmetic: Principles, Architectures, and Design (Wiley, New York 1979)

    Google Scholar 

  11. P. Strobach: Efficient covariance ladder algorithms for finite arithmetic applications. Signal Processing 13, 29–70 (1987)

    Article  MathSciNet  Google Scholar 

  12. T.P. Barnwell III: Recursive windowing for generating autocorrelation coefficients for LPC analysis. IEEE Trans. ASSP 29, 1062–1066 (1981)

    Article  Google Scholar 

  13. J.M. Cioffi: High-speed systolic implementation of fast QR adaptive filters. Proc. Int. Conf. on ASSP, New York (1988) pp. 1584–1587

    Google Scholar 

  14. J.M. Cioffi: The fast adaptive rotors RLS algorithm. IEEE Trans. ASSP, to appear (1989)

    Google Scholar 

  15. G.H. Golub: Numerical methods for solving linear least-squares problems. Numer. Math. 7, 206–216 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  16. M. Bellanger: The potential of QR adaptive filter variables for signal analysis. Proc. Int. Conf. on ASSP, Glasgow (1989) pp. 2166–2169

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Strobach, P. (1990). Recursive Least-Squares Using the QR Decomposition. In: Linear Prediction Theory. Springer Series in Information Sciences, vol 21. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-75206-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-75206-3_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-75208-7

  • Online ISBN: 978-3-642-75206-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics