Skip to main content

The Linear Prediction Model

  • Chapter

Part of the book series: Springer Series in Information Sciences ((SSINF,volume 21))

Abstract

One of the most powerful techniques for describing time-varying processes arises from the assumption that an observed process {x(t)}, represented by an ensemble of L independent measurements x0(t), x1(t),…, xL−1(t) at time step t

$$ {\mathbf{x}}{\text{(t)}}{\mkern 1mu} {\text{ = }}{{[{{{\text{x}}}_{{\text{0}}}}{\text{(t),}}{\mkern 1mu} {{{\text{x}}}_{{\text{1}}}}{\text{(t),}}{\mkern 1mu} \ldots {\mkern 1mu} ,{\mkern 1mu} {{{\text{x}}}_{{{\text{L - 1}}}}}({\text{t}})]}^{{\text{T}}}}, $$
(2.1)

can be predicted by a weighted linear combination of previous measurements available in the data vectors x(t−1), x(t−2),…, x(t−p), where

$$ x(t - m) = {{\left[ {{{x}_{O}}(t - m),{{x}_{1}}(t - m), \ldots ,{{x}_{{L - 1}}}(t - m)} \right]}^{T}};\quad 1 \leqslant m \leqslant p $$
(2.2)

and p denotes the model order. Introducing the associated weighting coefficients a1(t), a2(t), …, ap(t), one can write the linear combination as

$$ {{\hat{x}}^{f}}(t) = \sum\limits_{{m = 1}}^{p} {{{a}_{m}}(t)x(t - m)} $$
(2.3)

where f (t) is the resulting forward predicted process vector. The parameter vector

$$ {\mathbf{a}}{\text{(t)}} = {{[{{{\text{a}}}_{{\text{1}}}}{\text{(t),}}{\mkern 1mu} {{{\text{a}}}_{{\text{2}}}}{\text{(t),}}{\mkern 1mu} \ldots {\mkern 1mu} {\text{,}}{\mkern 1mu} {{{\text{a}}}_{{\text{P}}}}({\text{t}})]}^{{\text{T}}}} $$
(2.4)

should be determined in a sense such that the forward predicted process vector f (t) becomes as “close” as possible to the true process vector x(t). Introducing the matrix of past observations X(t)

$$ {\mathbf{X}}{\text{(t)}} = [{\mathbf{x}}{\text{(t - 1)}},{\mkern 1mu} {\mathbf{x}}{\text{(t - 2),}}{\mkern 1mu} \ldots {\mkern 1mu} {\text{,}}{\mkern 1mu} {\mathbf{x}}{\text{(t - p)}}] $$
(2.5)

we may express the linear combination or predictor equation (2.3) as

$$ {{{\mathbf{\hat{x}}}}^{{\text{f}}}}{\text{(t)}}{\mkern 1mu} {\text{ = }}{\mkern 1mu} {\mathbf{X}}{\text{(t)}}{\mkern 1mu} {\mkern 1mu} {\mathbf{a}}{\text{(t)}}{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\text{.}} $$
(2.6)

The predictor determined by the expressions (2.3) or (2.6) can be interpreted as an all-zero or moving average (MA) filter structure as shown in Fig. 2.1.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

Chapter 2

  1. N. Levinson: The Wiener RMS (root-mean-square) error criterion in filter design and prediction. J. Math. Phys. 25, 261–278 (1947)

    MathSciNet  Google Scholar 

  2. N. Wiener: Extrapolation, Interpolation, and Smoothing of Stationary Time Series (MIT Press, Cambridge, MA 1942)

    Google Scholar 

  3. H.J. Larson, B.O. Shubert: Probabilistic Models in Engineering Sciences, Volume II: Random Noise, Signals, and Dynamic Systems (Wiley, New York 1979)

    Google Scholar 

  4. T.C. Hsia: System Identification (Lexington Books, Lexington, MA 1977)

    Google Scholar 

  5. L. Ljung, T. Söderström: Theory and Practice of Recursive Identification (MIT Press, Cambridge, MA 1983)

    MATH  Google Scholar 

  6. G.U. Yule (1907): “On the Theory of Correlation for Any Number of Variables, Treated by a New System of Notation”, in Statistical Papers of George Udny Yule (Griffin, London 1971)

    Google Scholar 

  7. J.D. Market A.H. Gray: Linear Prediction of Speech, Communications and Cybernetics, Vol. 12 (Springer, Berlin, Heidelberg 1976)

    Book  Google Scholar 

  8. L.R. Rabiner, B. Gold: Theory and Application of Digital Signal Processing (Prentice-Hall, Englewood Cliffs, NJ 1975)

    Google Scholar 

  9. U. Appel, A. von Brandt: Recursive lattice algorithms with finite duration windows. Proc. IEEE Int. Conf. on ASSP, Paris (1982) pp. 647–650

    Google Scholar 

  10. P. Strobach: Efficient covariance ladder algorithms for finite arithmetic applications. Signal Processing 13, 29–70 (1987)

    Article  MathSciNet  Google Scholar 

  11. T.P. Barnwell III: Recursive windowing for generating autocorrelation coefficients for LPC analysis. IEEE Trans. ASSP 29, 1062–1066 (1981)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Strobach, P. (1990). The Linear Prediction Model. In: Linear Prediction Theory. Springer Series in Information Sciences, vol 21. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-75206-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-75206-3_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-75208-7

  • Online ISBN: 978-3-642-75206-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics