Accretion Disks in Close Binaries

  • W. J. Duschl
Conference paper
Part of the Reviews in Modern Astronomy book series (MOD.ASTRONOMY, volume 2)


We discuss models for accretion disks in close binary systems in which the turbulent viscosity and convective energy transport are fully coupled in the convectively structured zones. Thus, at least in these regions, it is no longer necessary to introduce an ad hoc viscosity parameter removing one free parameter of previously described models. The implications and predictions of the models are described. Finally the assumption of isotropy of the turbulence is discussed.


Accretion Disk Viscosity Parameter Convective Region Close Binary System Symbiotic Star 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Duschl, W.J., 1983: Astron. Astrophys., 121,153ADSGoogle Scholar
  2. Duschl, W.J., 1989: Astron. Astrophys., in pressGoogle Scholar
  3. Eddington, A.S., 1930: The Internal Constitution of the Stars, Cambridge University Press, Cambridge, U.K.Google Scholar
  4. Frank, J., King, A.R., Raine, D.J., 1985: Accretion Power in Astrophysics, Cambridge University Press, Cambridge, U.K.Google Scholar
  5. Hazlehurst, J., 1989: Observatory, 109, 91ADSGoogle Scholar
  6. Hōshi, R., 1979: Progr. Theor. Phys., 61,1307CrossRefADSGoogle Scholar
  7. Kant, I., 1755: Allgemeine Naturgeschichte und Theorie des Himmels, KönigsbergGoogle Scholar
  8. Lüst, R., 1952: Zeitschr. Naturforschung, 7a,87ADSGoogle Scholar
  9. Meyer, F., 1984: Astron. Astrophys., 132,143ADSGoogle Scholar
  10. Meyer, F., 1985: in: Recent Results on Cataclysmic Variables, ESA SP-236, 83Google Scholar
  11. Meyer, F., Meyer-Hofmeister, E., 1981: Astron. Astrophys., 104,L10ADSGoogle Scholar
  12. Meyer, F., Meyer-Hofmeister, E., 1989: Astron. Astrophys., 221,36ADSGoogle Scholar
  13. Meyer-Hofmeister E., 1987: Astron. Astrophys., 175,113ADSGoogle Scholar
  14. Mineshige, S., 1988: Astron. Astrophys., 190,72ADSGoogle Scholar
  15. Novikov, I.D., Thorne K.S., 1973: in: Black Holes, eds: C. DeWitt, B.S. DeWitt; Gordon and Breach Science Publishers, New York, USA; pp.343ff.Google Scholar
  16. Osaki, Y., 1974: Publ. Astron. Soc. Japan, 26,429ADSGoogle Scholar
  17. Osaki, Y., 1989: in: Theory of Accretion Disks, eds: F. Meyer, W.J. Duschl, J. Frank, E. Meyer-Hofmeister; Kluwer Academic Publishers, Dordrecht, The Netherlands; pp.l83ffGoogle Scholar
  18. Pringle, J.E., 1981: Ann. Rev. Astron. Astrophys., 19,137CrossRefADSGoogle Scholar
  19. Pringle, J.E., Verbunt, F., Wade, R., 1986: Monthly Notices Royal Astron. Soc., 221,169ADSGoogle Scholar
  20. Shakura, N.I., Sunyaev, R.A., 1973: Astron. Astrophys., 24,337ADSGoogle Scholar
  21. Tylenda, R., 1981: Acta Astronomica, 31,127ADSGoogle Scholar
  22. Verbunt, F., 1987: Astron. Astrophys. Suppl., 71,339ADSGoogle Scholar
  23. von Weizsäcker, C.F., 1943: Zeitschr. Astrophys., 22,319MATHADSGoogle Scholar
  24. Williams. R.E., 1980: Astrophys. J., 235,939CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • W. J. Duschl
    • 1
  1. 1.Institut für Theoretische AstrophysikUniversität HeidelbergHeidelbergFed. Rep. of Germany

Personalised recommendations