Skip to main content

The Centrosome: Recent Advances on Structure and Functions

  • Chapter
Progress in Molecular and Subcellular Biology

Part of the book series: Progress in Molecular and Subcellular Biology ((PMSB,volume 11))

Abstract

The centrosome acts as the microtubule-organizing center in interphasic animal cells. It duplicates only once at each cell cycle and the two products function as mitotic poles during cell division. Recent advances in the isolation of centrosomes have opened the way to experimental studies on this minute and potentially important organelle. Here we will review the literature from only the last five years, including quite recent data, as previous reviews have covered earlier reports (Peterson and Berns 1980; Brown et al. 1982; Wheatley 1982; McIntosh 1983; Bornens and Karsenti 1984; Brinkley 1985; Vorobjev and Nadehzdina 1987).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andersen B, Osborn M, Weber R (1978) Specific visualization of the calcium dependent regulatory protein of cyclic nucleotide phosphodiesterase (modulator protein) in tissue culture cells by immunofluorescence microscopy: mitosis and intercellular bridges. Cytobiologie 17: 354–364

    PubMed  CAS  Google Scholar 

  • Arion D, Meijer L, Brizuela L, Beach D (1988) cdc2 is a component of the M phase-specific histone H1 kinase: evidence for identity with MPF. Cell 55: 371–378

    Google Scholar 

  • Aubin JE, Osborn M, Franke WW, Weber K (1980) Intermediate filaments of the vimentin-type and the cytokeratin-type are distributed differently during mitosis. Exp Cell Res 129: 149–165

    PubMed  CAS  Google Scholar 

  • Aubin JE, Osborn M, Franke WW, Weber K (1980) Intermediate filaments of the vimentin-type and the cytokeratin-type are distributed differently during mitosis. Exp Cell Res 129: 149–165

    PubMed  CAS  Google Scholar 

  • Bastmeyer M, Russell DG (1987) Characterization of pales spermatocyte spindles, with reference to an MTOC-associated protein. J Cell Sci 87: 431–438

    PubMed  CAS  Google Scholar 

  • Bastmeyer M, Steffen W, Fuge H (1986) Immunostaining of spindle components in tipulid spermatocytes using a serum against pericentriolar material. Eur J Cell Biol 42: 305–310

    PubMed  CAS  Google Scholar 

  • Bataillon E (1911) Les deux facteurs de la pharthenogénése traumatique chez les amphibiens CR Acad Sci (Paris) 152: 920–922

    Google Scholar 

  • Baum P, Furlong C, Byers B (1986) Yeast gene required for spindle pole body duplication: homology of its product with Ca’ -binding proteins. Proc Natl Acad Sci USA 83: 5512–5516

    PubMed  CAS  Google Scholar 

  • Baum P, Yin C, Goetsch L, Byers B (1988) A yeast gene essential for regulation of spindle pole duplication. Mol Cell Biol 8: 5386–5397

    PubMed  CAS  Google Scholar 

  • Bessis M, De Boisfleury A (1976) A catalogue of white blood cell movements (normal and pathologic). Blood Cells 2: 365–410

    Google Scholar 

  • Blackburn GR, Barreau MD, Dewey WC (1978) Partial purification of centrosomes from chinese hamster ovary cells. Exp Cell Res 113: 183–187

    PubMed  CAS  Google Scholar 

  • Blose SH, Bushnell A (1982) Observations on the vimentin 10 nm filaments during mitosis in BHK 21 cells. Exp Cell Res 142: 57–62

    PubMed  CAS  Google Scholar 

  • Bonifacino JS, Klausner RD, Sandoval IV (1985) A widely distributed nuclear protein immunologically related to the microtubule-associated protein MAP-1 is associated with the mitotic spindle. Proc Natl Acad Sci USA 82: 1146–1150

    PubMed  CAS  Google Scholar 

  • Bornens M (1977) Is the centriole bound to the nuclear membrane? Nature 270: 80–82

    PubMed  CAS  Google Scholar 

  • Bornens M, Karsenti E (1984) The centrosome. In: Bittar EE (eds) Membrane, structure and functions. Vol 6. John Wiley, New York pp 100–171

    Google Scholar 

  • Bornens MM, Paintrand M, Berges J, Marty MC, Karsenti E (1987) Structural and chemical characterization of isolated centrosomes. Cell Motil Cytoskeleton 8: 238–249

    PubMed  CAS  Google Scholar 

  • Boveri T (1901) Uber die Natur der Centrosomen. Jena Z Med Naturwiss 28: 1–220

    Google Scholar 

  • Bre MH, Kreis TE, Karsenti E (1987) Control of microtubule nucleation and stability in MadinDarby canine kidney cells: occurence of non centrosomal, stable detyrosinated micro-tubules. J Cell Biol 105: 1283–1296

    PubMed  CAS  Google Scholar 

  • Brinkley BR (1985) Microtubule organizing centers. Annu Rev Cell Biol 1: 145–172

    PubMed  CAS  Google Scholar 

  • Brooks RF, Bennett DC, Smith JA (1980) Mammalian cell cycles need two random transitions. Cell 19: 493–504

    PubMed  CAS  Google Scholar 

  • Brown DL, Schweitzer I, Sunga PS (1982) The site specificity of microtubule initiation by microtubule organizing centers. In: Cappuccinelli P, Morris NR (eds) Microtubules in microorganisms. Marcel Dekker, New York (Microbiological series, vol 8, pp 31–49 )

    Google Scholar 

  • Byers B, Goetsch L (1975) Behavior of spindles and spindle plaques in the cell cycle and conjugation of Saccharomyces cerevisiae. J Bacteriol 124: 511–523

    PubMed  CAS  Google Scholar 

  • Byers HR, Fujiwara K, Porter KR (1980) Visualization of microtubules of cells in situ by indirect immunofluorescence, Proc Natl Acad Sci USA 77: 6657–6661

    PubMed  CAS  Google Scholar 

  • Calarco-Gillam PD, Siebert MC, Hubble R, Mitchison T, Kirschner MW (1983) Centrosome development in early mouse embryos as defined by autoantibody against pericentriolar material. Cell 35: 621–623

    PubMed  CAS  Google Scholar 

  • Clayton L, Black CM, Lloyd CW (1985) Microtubule nucleating sites in higher plant cells identified by an autoantibody against pericentriolar material. J Cell Biol 101: 319–324

    PubMed  CAS  Google Scholar 

  • Courvalin JC, Hernandez-Verdun D, Gosti-Testu F, Marty MC, Maunoury R, Bornens M (1986) A protein of Mr 80,000 is associated with the nucleolus organizer of human cell lines. Chromosoma (Berl) 94: 353–361

    CAS  Google Scholar 

  • Crozet N (1988) Ultrastructural aspects of in vitro fertilization in sheep. J Ultrastruct Mol Struct Res 98: 1–10

    PubMed  CAS  Google Scholar 

  • Dane PJ, Tucker JB (1986) Supracellular microtubule alignment in cell layers associated with the secretion of certain fish scales. J Cell Sci Suppl 273–291

    Google Scholar 

  • Davis FM, Tsao TY, Fowler SK, Rao PN (1983) Monoclonal antibodies to mitotic cells. Proc Natl Acad Sci USA 80: 2926–2930

    PubMed  CAS  Google Scholar 

  • Debec A, Szollosi A, Szollosi D (1982) A Drosophila melanogaster cell line lacking centrioles. Biol Cell 44: 133–138

    Google Scholar 

  • De Camilli P, Moretti M, Denis Donini S, Lohman SM (1986) Heterogeneous distribution of the c-AMP receptor protein kinase R-II in the nervous system: evidence for its intracelluar accumulation on microtubules, microtubule organizing centres and the the area of the golgi complex. J Cell Biol 103: 189–203

    PubMed  Google Scholar 

  • Draetta G, Beach D (1988) Acitivation of cdc2 protein kinase during mitosis in human cells: cell-cycle dependent phosphorylation and subunit rearrangement. Cell 54: 17–26

    PubMed  CAS  Google Scholar 

  • Draetta G, Brizuela L, Potashkin J, Beach D (1987) Identification of p34 and p13, human homologs of cell cycle regulators of fission yeast encoded by cdc2 + and sucl +. Cells 50: 319–325

    CAS  Google Scholar 

  • Dunphy WG, Brizuela L, Beach D, Newport J (1988) The Xenopus cdc2 protein is a component of MPF, a cytoplasmic regulator of mitosis. Cell 54: 423–431

    PubMed  CAS  Google Scholar 

  • Euteneuer U, Schliwa M (1984) Persistent, directional motility of cells and cytoplasmic fragments in the absence of microtubules. Nature (London) 310: 58–61

    CAS  Google Scholar 

  • Evans L, Mitchison TJ, Kirschner WM (1985) Influence of the centrosome on the structure of nucleated microtubules. J Cell Biol 100: 1185–1191

    PubMed  CAS  Google Scholar 

  • Fais D, Nadezhdina, Chentsov YS (1984) Evidence for the nucleus-centriole association in bovine cells obtained by ultracentrifugation. Eur J Cell Biol 133: 190–196

    Google Scholar 

  • Frasch M, Glover DM, Saumweber H (1986) Nuclear antigens follow different pathways into daughter nuclei during mitosis in early Drosophila embryos. J Cell Sci 82: 155–172

    PubMed  CAS  Google Scholar 

  • Freeman M, Nusslein-Volhard C, Glover DM (1986) The dissociation of nuclear and centrosomal division in gnu, a mutation causing giant nuclei in Drosophila. Cell 46: 457–468

    PubMed  CAS  Google Scholar 

  • Gauthier J, Norbury C, Lohka M, Nurse P, Mailer J (1988) Purified maturation-promoting factor contains the product of a Xenopus homolog of the fission yeast cell control gene cdc2. Cell 54: 433–439

    Google Scholar 

  • Gonzalez C, Casal J, Ripoll P (1988) Functional monopolar spindles caused by mutation in mgr, a cell division gene of Drosophila melanogaster. J Cell Sci 89: 39–48

    PubMed  Google Scholar 

  • Gosti F, Marty MC, Courvalin JC, Maunoury R, Bornens M (1987) Centrosomal proteins and lactate dehydrogenase possess a common epitope in human cell lines. Proc Natl Acad Sci 84: 1000–1004

    PubMed  CAS  Google Scholar 

  • Gosti-Testu F, Marty MC, Berges J, Maunoury R, Bornens M (1986) Identification of centrosomal proteins in a human lymphoblastic cell line. EMBO J 5: 2545–2550

    CAS  Google Scholar 

  • Gounon P, Lainé MC, Sandoz D (1987) Cytokeratine filament organization in the ciliated cells of the quail oviduct. Eur J Cell Biol 44: 229–237

    PubMed  CAS  Google Scholar 

  • Grafen A (1988) A centrosomal theory of the short term evolutionary maintenance of sexual reproduction. J Theor Biol 131: 163–173

    PubMed  CAS  Google Scholar 

  • Harper JDI, Mitchison JM, Williamson RE, John PCL (1989) Does the autoimmune serum 5051 specifically recognise microtubule organising centres in plant cells? Cell Biol Intern Reports, 13: 471–475

    Google Scholar 

  • Hauser M (1986) Taxol affects both the microtubular arrays of heliozoan axonemes and their microtubule-organizing centers. Eur J Cell Biol 42: 295–304

    PubMed  CAS  Google Scholar 

  • Heidemann SR, Kirschner MW (1975) Aster formation in eggs of Xenopus laevis. Induction by isolated basal bodies. J Cell Biol 67: 105–117

    Google Scholar 

  • Heidemann SR, Sanders G, Kirschner M (1977) Evidence for a functional role of RNA in centrioles. Cell 10: 337–350

    PubMed  CAS  Google Scholar 

  • Huang B, Watterson DM, Lee VD, Schibler MJ (1988a) Purification and characterization of a basal body-associated Ca’-binding protein. J Cell Biol 107: 121–131

    PubMed  CAS  Google Scholar 

  • Huang B, Mangersen A, Lee VD (1988b) Molecular cloning of cDNA for caltractin, a basal body-associated Ca’ -binding protein: homology in its protein sequence with Calmodulin and the yeast cdc31 gene product. J Cell Biol 107: 133–140

    PubMed  CAS  Google Scholar 

  • Hurt E (1988) A novel nucleoskeletal-like protein located at the nuclear periphery, required for the life cycle of S. cerevisiae. EMBO J 7: 4323–4334

    CAS  Google Scholar 

  • Hurt E (1988) A novel nucleoskeletal-like protein located at the nuclear periphery, required for the life cycle of S. cerevisiae. EMBO J 7: 4323–4334

    CAS  Google Scholar 

  • Kallenbach RJ (1985) Ultrastructural analysis of the initiation and development of cytasters in sea urchin eggs. J Cell Sci 73: 261–278

    PubMed  CAS  Google Scholar 

  • Karsenti E, Maro B (1986) Centrosomes and the spatial distribution of microtubules in animal cells. TIBS 11: 460–463

    Google Scholar 

  • Karsenti E, Bravo R, Kirschner M (1987) Phosphorylation changes associated with the early cell cycle in Xenopus eggs. Dev Biol 119: 442–453

    PubMed  CAS  Google Scholar 

  • Karsenti E, Newport J, Hubble R, Kirschner MW (1984) Interconversion of metaphase and interphase microtubule arrays as studied by the injection of centrosomes and nuclei into Xenopus eggs. J Cell Biol 98: 1730–1745

    PubMed  CAS  Google Scholar 

  • Katsuma Y, Swierenga SHH, Marceau N, French SW (1987) Connections of intermediate filaments with the nuclear lamina and the cell periphery. Biol Cell 59: 193–204

    PubMed  CAS  Google Scholar 

  • Keryer G, Davis FM, Rao PN, Beisson J (1987) Protein phosphorylation and dynamics of cytoskeletal structures associated with basal bodies in Paramecium. Cell Motil Cytoskeleton 8: 44–54

    PubMed  CAS  Google Scholar 

  • Keryer G, Garreau de Loubresse N, Bordes N, Bornens M (1989) Identification of a spindle-associated protein in ciliate micronuclei. J Cell Sci 93: 287–298

    CAS  Google Scholar 

  • Kirschner MW, Mitchison T (1986) Beyond self-assembly: from microtubules to morphogenesis. Cell 45: 329–342

    PubMed  CAS  Google Scholar 

  • Kitanishi-Yamura, Blose SH, Fukui Y (1985) Role of the MT-MTOC complex in determination of the cellular locomotory unit in Dictyostelium. Protoplasma 127: 133–146

    Google Scholar 

  • Kleve MG, Clark WH (1980) Association of actin with sperm centrioles: isolation of centriolar complexes and immunofluorescent localisation of actin. J Cell Biol 86: 87–95

    PubMed  CAS  Google Scholar 

  • Klotz C, Bordes N, Laine MC, Sandoz D, Bornens M (1986) A protein of 175,000 daltons associated with striated rootlets in ciliated epithelia as revealed by a monoclonal antibody. Cell Motil Cytoskeleton 6: 56–67

    PubMed  CAS  Google Scholar 

  • Klotz C, Dabauvalle MC, Paintrand M, Bornens M, Karsenti E (1988) Study of the structure-activity relationship of isolated centrosomes. In: Rousset 3AF (ed) Structure and functions of the cytoskeleton. Colloque INSERM/John Libbey. Eurotex Ltd. 171: 341–347

    Google Scholar 

  • Klotz C, Dabauvalle MC, Paintrand M, Bornens M, Karsenti E (1988) Study of the structure-activity relationship of isolated centrosomes. In: Rousset 3AF (ed) Structure and functions of the cytoskeleton. Colloque INSERM/John Libbey. Eurotex Ltd. 171: 341–347

    Google Scholar 

  • Klotz C, Dabauvalle MC, Paintrand M, Bornens M, Karsenti E (1988) Study of the structure-activity relationship of isolated centrosomes. In: Rousset 3AF (ed) Structure and functions of the cytoskeleton. Colloque INSERM/John Libbey. Eurotex Ltd. 171: 341–347

    Google Scholar 

  • Koonce MP, Cloney RA, Berns MW (1984) Laser irradiation of centrosomes in newt

    Google Scholar 

  • eosinophils: evidence of a centriole role in motility. J Cell Biol 98:1999–2010

    Google Scholar 

  • Kuriyama R (1984) Activity and stability of centrosomes of chinese hamster ovary cells in

    Google Scholar 

  • nucleation of microtubules in vitro. J Cell Sci 66:277–295

    Google Scholar 

  • Kuriyama R, Borisy GG (1981) Microtubule-nucleating activity of centrosomes in chinese hamster ovary cells is independent of the centriole cycle but coupled to the mitotic cycle. J Cell Biol 91: 822–826

    PubMed  CAS  Google Scholar 

  • Kuriyama R, Borisy GG (1983) Cytasters induced within unfertilized sea urchin eggs. J Cell Sci 61: 175–189

    PubMed  CAS  Google Scholar 

  • Kuriyama R, Borisy GG (1985) Identification of molecular components of the centrosphere in the mitotic spindle of sea urchin eggs. J Cell Biol 101: 524–530

    PubMed  CAS  Google Scholar 

  • Labbe JC, Lee MG, Nurse P, Picard A, Dorée M (1988) Activation at M phase of a protein kinase encoded by a starfish homologue of the cell cycle control gene cdc2+. Nature 335: 251–254

    PubMed  CAS  Google Scholar 

  • Lee MG, Nurse P (1987) Complementation used to clone a human homologue of the fission yeast cell cycle control gene cdc2+. Nature 327: 31–35

    PubMed  CAS  Google Scholar 

  • Lee MG, Norbury C, Spurr NK, Nurse P (1988) Regulated expression and phosphorylation of a possible mammalian cell cycle control protein. Nature 333: 676–679

    PubMed  CAS  Google Scholar 

  • Le Guen P, Crozet N (1989) Microtubules and centrosome distribution during sheep fertilization. Eur J Cell Biol 98: 239–245

    Google Scholar 

  • Lohka MJ, Hayes MK, Mailer JL (1988) Purification of maturation-promoting factor, an intracellular regulator of early mitotic events. Proc Natl Acad Sci USA 85: 3009–3013

    PubMed  CAS  Google Scholar 

  • Malawista SE, Chevance de Boisfleury A (1982) The cytokinetoplast: purified stable and functional motile machinery from human blood polymorphonuclear leukocytes. J Cell Biol 95: 960–973

    CAS  Google Scholar 

  • Mailer J (1985) Regulation of amphibian oocyte maturation. Cell Differ 16: 211–221

    Google Scholar 

  • Maller J, Poccia D, Nishioka D, Kido P, Gerhart J, Hartman H (1976) Spindle formation and cleavage in Xenopus eggs injected with centriole containing fractions from sperm. Exp Cell Res 99: 285–294

    PubMed  CAS  Google Scholar 

  • Marchisio PC, Cirillo D, Naldini G, Primavera MV, Teti A, Zambonin-Zallone, A (1984) Cell substratum interaction of culture avian osteoclasts is mediated by specific adhesion structures. J Cell Biol 99: 1696–1705

    PubMed  CAS  Google Scholar 

  • Maro B, Bornens M (1980) The centriole-nucleus association: effects of cytochalasin B and nocodazole. Biol Cell 39: 287–290

    CAS  Google Scholar 

  • Maro B, Paintrand M, Sauron ME, Paulin D Bornens M (1984) Vimentin filaments and centrosomes are they associated? Exp Cell Res 150: 452–458

    PubMed  CAS  Google Scholar 

  • Maro B, Howlett SK, Webb M (1985) Non-spindle microtubule organizing centers in metaphase II arrested mouse oocytes. J Cell Biol 101: 1665 1672

    Google Scholar 

  • Maunoury R (1978) Localization immunocytochimique de la centrosphere de cellules tumorales humaines par utilisation d’anticorps naturels de lapin. CR Acad Sci (Paris) Ser 3, 286: 503–506

    Google Scholar 

  • Mazia D (1961) Mitosis and physiology of cell division. In: Brachet J, Mirsky A (eds) The Cell: biochemistry, physiology, morphology. Academic Press, New York, pp 77 394

    Google Scholar 

  • Mazia D (1987) The chromosome cycle and the centrosome cycle in the mitotic cycle. Int Rev Cytol 100: 49–92

    PubMed  CAS  Google Scholar 

  • Mazia D, Harris PJ, Bibring T (1960) The multiplicity of the mitotic centers and the time course of their duplication and separation. J Biophys Chem Cytol 7: 1 20

    Google Scholar 

  • McIntosh JR (1983) The centrosome as an organizer of the cytoskeleton. Mol Cell Biol 2: 115142

    Google Scholar 

  • Meyerhof PG, Masui Y (1979) Properties of a cytostatic factor from Xenopus laevis eggs. Dev Bil 72: 1982–1987

    Google Scholar 

  • Mitchison T, Krischner M W (1984) Microtubule assembly nucleated by isolated centrosomes. Nature 312: 232–237

    PubMed  CAS  Google Scholar 

  • Mitchison TJ, Kirschner MW (1986) Isolation of mammalian centrosomes. Methods Enzymol 134: 261–268

    PubMed  CAS  Google Scholar 

  • Mogensen MM, Tucker JB (1987) Evidence for microtubule nucleation at plasma membrane-associated sites in Drosophila. J Cell Sci 88: 95 107

    Google Scholar 

  • Moudjou M, Lanotte M, Bornens M (1989) The fate of the centrosome-microtubule network in monocyte-derived giant cells. J Cell Sci 94: 237 244

    Google Scholar 

  • Nadezhdina ES, Fais D, Chentsov YuS (1978) Partial purification of centrioles from spleen cells. Cell Biol Int Rep 2: 601–606

    PubMed  CAS  Google Scholar 

  • Nagano H, Hirai S, Okana K, Ikegami S (1981) A chromosomal cleavage of fertilized starfish eggs in the presence of Aphidicolin. Dev Biol 85: 409–415

    PubMed  CAS  Google Scholar 

  • Neighbors BW, Williams RC, McIntosh JR (1988) Localization of kinesin in cultured cells. J Cell Biol 106: 1193–1204

    PubMed  CAS  Google Scholar 

  • Nelson WJ, Traub P (1982) Is the perinulcear position of the centriole maintained by the intermediate filament network? Cell Biol Int Rep 6: 215–223

    PubMed  CAS  Google Scholar 

  • Nigg EA, Schafer G, Hiltz H, Eppenberger HM (1985) Cyclic-AMP-dependent protein kinase type II is associated with the Golgi complex and with centrosomes. Cell 41: 1039 1051

    Google Scholar 

  • Oliver JM, Osborn WRA, Pfeiffer RJ, Child FM, Berlin RD (1981) Purine nucleoside phosphorylase is associated with centrioles and basal bodies. J Cell Biol 91: 837–847

    PubMed  CAS  Google Scholar 

  • Omura F, Fukui Y (1985) Dictyostelium MTOC: structure and linkage to the nucleus. Protoplasma 127: 212–221

    Google Scholar 

  • Peterson SP, Berns MW (1980) The centriolar complex. Int Rev Cytol 64: 81–106

    PubMed  CAS  Google Scholar 

  • Picard A, Karsenti E, Dabauvalle MC, Doree M (1987) Release of mature starfish ovocytes from interphase arrest by microinjection of human centrosomes. Nature 327: 170–172

    PubMed  CAS  Google Scholar 

  • Picard A, Harricane MC, Labbe JC, Doree M (1988) Germinal vesicle components are notrequired for the cell cycle oscillator of the early starfish embryo. Dev Biol 128: 121–128

    PubMed  CAS  Google Scholar 

  • Pickett-Heaps JD (1969) The evolution of the mitotic apparatus: an attempt at comparative ultrastructural cytology in dividing plant cells. Cytobios 3: 257–280

    Google Scholar 

  • Piperno G, Huang B, Luck JL (1977) Two-dimensional analysis of flagellar proteins from wild type and paralysed mutants of Chlamydomonas reinhardtii. Proc Natl Acad Sci USA 74: 1600–1604

    PubMed  CAS  Google Scholar 

  • Raff JW, Glover DM (1988) Nuclear and cytoplasmic mitotic cycles continue in Drosophila embryos in which DNA synthesis is inhibited with Aphidicolin. J Cell Biol 107: 2009–2019

    PubMed  CAS  Google Scholar 

  • Rieder CR, Borisy GG (1982) The centrosome cycle in PtK2 cells: asymetric distribution and structural changes in the pericentriolar material. Biol Cell 44: 117–132

    Google Scholar 

  • Robbins E, Gonatas NK (1964) The ultrastructure of a mammalian cell during the mitotic cycle. J Cell Biol 21: 429–458

    PubMed  CAS  Google Scholar 

  • Rogers KA, McKee NC, Kalnins UI (1985) Preferential orientation of centrioles towards the heart in endothelial cells of major blood vessels is restablished after reversal of a segment. Proc Natl Acad Sci USA 82: 3272–3276

    PubMed  CAS  Google Scholar 

  • Roth KE, Rieder CL, Bowser SS (1988) Flexible-substratum technique for viewing cells from the side: some in vivo properties of primary (9 + O) cilia in cultured kidney epithelia. J Cell Sci 89: 457–466

    PubMed  Google Scholar 

  • Ruiz F, Garreau de Loubresse N, Beisson J (1987) A mutation affecting basal body duplication and cell shape in Paramecium. J Cell Biol 104: 417–430

    CAS  Google Scholar 

  • Salisbury JL, Floyd GL (1978) Calcium induced contraction of the rhizoplast of a quadriflagellate green alga. Science ( Wash. DC ) 202: 975–978

    Google Scholar 

  • Salisbury JL, Baron AT, Coliny BEE, Marlindale VE, Sanders MA (1986) Calcium modulated contractile proteins associated with the eucaryotic centrosome. Cell Motil Cytoskeleton 6: 193–197

    PubMed  CAS  Google Scholar 

  • Salisbury JL, Sanders MA, Hzarpst L (1987) Flagellar root contraction and nuclear movement during flagellar regeneration in Chlamydomonas reinhardtii. J Cell Biol 105: 1799–1805

    CAS  Google Scholar 

  • Schatten H, Schatten G (1986) Motility and centrosomal organization during sea urchin and mouse fertilization. Cell Motil Cytoskeleton 6: 163–175

    PubMed  CAS  Google Scholar 

  • Schatten H, Walter M, Mazia D, Biesmann H, Paweletz N, Coffe G, Schatten G (1987) Centrosome detection in sea urchin eggs with a monoclonal antibody against Drosophila intermediate filament proteins. Characterization of stages of the division cycle of centrosomes. Proc Natl Acad Sci USA 84: 8488–8492

    Google Scholar 

  • Schliwa M, Euteneuer U (1985) Evidence for an involvement of actin in the positioning and motility of centrosomes. J Cell Biol 101: 96–103

    Google Scholar 

  • Schliwa M, Pryzwansky KB, Euteneuer U (1982) Centrosome splitting in neutrophils: an unusual phenomenon related to cell activation and motility. Cell 81: 705–717

    Google Scholar 

  • Schulze E, Kirschner MW (1986) Microtubule dynamics in interphase cells. J Cell Biol 102: 1020–1031

    CAS  Google Scholar 

  • Sellitto C, Kuriyama R (1988) Distribution of pericentriolar in multipolar spindles induced by colcemid treatment in chinese hamster ovary cells. J Cell Sci 89: 57–65

    PubMed  Google Scholar 

  • Sherline P, Mascardo RJ (1982) EGF induced centrosomal separation: mechanism and relationship to mitogenesis. J. Cell Biol 95: 316–322

    PubMed  CAS  Google Scholar 

  • Sluder G, Begg DA (1985) Experimental analysis of the reproduction of spindle poles. J Cell Sci 76: 35–51

    PubMed  CAS  Google Scholar 

  • Sluder G, Rieder CL (1985) Centriole number and the reproductive capacity of spindle poles. J Cell Biol 100: 887–896

    PubMed  CAS  Google Scholar 

  • Sluder G, Miller FJ, Rieder CL (1986) The reproduction of centrosomes. Nuclear versus cytoplasmic controls. J Cell Biol 103: 1873–1881

    Google Scholar 

  • Snyder JA, McIntosh JR (1975) Initiation and growth of microtubules from mitotic centers in lysed mammalian cells. J Cell Biol 67: 744–760

    PubMed  CAS  Google Scholar 

  • Snyder JA, Hamilton BT, Mullins JM (1982) Loss of mitotic centrosomal microtubule initiation capacity at the metaphase-anaphase transition. Eur J Cell Biol 27: 191–199

    PubMed  CAS  Google Scholar 

  • Soltys BJ, Borisy GG (1985) Polymerization of tubulin in vivo Direct evidence for assembly onto microtubules ends and from centrosomes. J Cell Biol 100: 1682–1689

    PubMed  CAS  Google Scholar 

  • Steffen W, Linck R (1988) Evidence for tektins in centrioles and axonemal microtubules. Proc Natl Acad Sci USA 85: 2643–2647

    PubMed  CAS  Google Scholar 

  • Sunkel CE, Glover DM (1988) Polo, a mitotic mutant of Drosophila displaying abnormal spindle poles. J Cell Sci 89: 25–3

    PubMed  Google Scholar 

  • Szollosi D, Callarco P, Dlonahue RP (1972) Absence of centrioles in the first and second meiotic spindles of mouse ovocytes. J Cell Biol 11: 521–541

    CAS  Google Scholar 

  • Tamm SL, Tamm S (1988) Development of macrociliary cells in Beroë. I. Actin bundles and centriole migration. J Cell Sci 89: 67–80

    Google Scholar 

  • Tassin AM, Maro B, Bornens M (1985a) Fate of microtubule-organizing centers during myogenesis in vitro. J Cell Biol 100: 35–46

    PubMed  CAS  Google Scholar 

  • Tassin AM, Paintrand M, Berger EG, Bornens M (1985b) The Golgi apparatus remains associated with microtubule organizing centers during myogenesis. J Cell Biol 101: 630–638

    PubMed  CAS  Google Scholar 

  • Testa NG, Allen TD, Lajtha LG, Onions D, Jarrett O (1981) Generation of osteoclasts in vitro. J Cell Sci 47: 127–137

    PubMed  CAS  Google Scholar 

  • Testa NG, Allen TD, Lajtha LG, Onions D, Jarrett O (1981) Generation of osteoclasts in vitro. J Cell Sci 47: 127–137

    PubMed  CAS  Google Scholar 

  • Tucker R, Pardec A, Fujiwara K (1979) Centriole ciliation is related to quiescence and DNA synthesis in 3T3 cells. Cell 17: 527 535

    Google Scholar 

  • Tucker JB, Milner MJ, Currie DA, Muir JW, Forrest DA, Spencer MJ (1986) Centrosomal microtubule organizing centres and a switch in the control of the protofilament number for cell surface-associated microtubules during Drosophila wing morphogenesis. Eur J Cell Biol 41: 279–289

    Google Scholar 

  • Vandre DD, Davis FM, Rao PN, Borisy GG (1986) Distribution of cytoskeletal proteins sharing a conserved phosphorylated epitope. Eur J Cell Biol 41: 72–81

    PubMed  CAS  Google Scholar 

  • Vorobjev IA, Nadehzdina ES (1987) The centrosome and its role in the organization of microtubules. Int Rev Cytol 106: 227–284

    PubMed  CAS  Google Scholar 

  • Welsh MJ, Dedman JR, Brinkley BR Means AR (1979) Tubulin and calmodulin. Effects of microtubule and microfilament inhibitors and localization in the mitotic apparatus. J Cell Biol 81: 624–634

    Google Scholar 

  • Wheatley DN (1982) The centriole: a central enigma of cell biology. Elsevier Biomedical Press, New York

    Google Scholar 

  • Whitfield WGF, Millar SE, Saumweber H, Frasch M, Glover DM (1988) Cloning of a gene encoding an antigen associated with the centrosome in Drosophila. J Cell Sci 89: 467–480

    PubMed  CAS  Google Scholar 

  • Wick SM (1985) Immunofluorescence microscopy of tubulin and microtubule arrays in plant cells. III. Transition between mitotic/cytokenetic and interphase microtubules arrays. Cell Biol Int Rep 9: 357–371

    PubMed  CAS  Google Scholar 

  • Wilsman NJ, Farnum CE (1983) Arrange of C. tubule protofilaments in Mammalian Basal Bodies. J Ultrastruct Res 84: 205–212

    PubMed  CAS  Google Scholar 

  • Wilson EB (1925) The cell and development heredity. McMillan, NY

    Google Scholar 

  • Wright RL, Salisbury J, Jarvik JW (1985) A nucleus-basal body connector in Chlamydomonas reinhardfii that may function in basal body localization or segregation. J Cell Biol 101: 1903–1912

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bornens, M., Bailly, E., Gosti, F., Keryer, G. (1990). The Centrosome: Recent Advances on Structure and Functions. In: Jeanteur, P., Kuchino, Y., Müller, W.E.G., Paine, P.L. (eds) Progress in Molecular and Subcellular Biology. Progress in Molecular and Subcellular Biology, vol 11. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-75178-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-75178-3_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-75180-6

  • Online ISBN: 978-3-642-75178-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics