Skip to main content

Mutation: Higher Plants

  • Chapter
Progress in Botany

Part of the book series: Progress in Botany/Fortschritte der Botanik ((BOTANY,volume 51))

  • 115 Accesses

Abstract

The combined treatment of plant material with different mutagens usually results in an increase in the mutationrate. This was just confirmed for the joint action of methyl iodide and triethylene melamine (Riegeret al. 1988). The opposite effect, a decrease in the yield of mutations, was observed in hexaploid Triticale after combined treatment with sodium azide (NaN3) and N-nitroso-N-methylurea (Oiejniczak and Patyna 1987). The effectiveness of ethyl methane sulfonate, one of the strongest mutagens existing at present, is enhanced, broadened, and modified under the influence of visible light of different wavelengths (Khalatkar and Bhargava 1986). The combination of in vitro culture of plant material and experimental mutagenesis proved to be very successful in roses. Basal segments of in vitro derived microshoots were irradiated with X-rays. From the developing plants, axillary shoots were repeatedly cut. Within a period of only 9 months, a large number of flower and leaf mutants along with other genotypes were selected (Walther and Sauer 1986).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adam ZM, El-Sedawy AI (1986) Egypt J Genet Cytol. 15:191–198.

    Google Scholar 

  • Akbar MA (1987) Theor Appl Genet 73:465–468.

    Google Scholar 

  • Alam S, Kabir G, Amin MN, Islam M (1987) Cytologia 52:721–724.

    Google Scholar 

  • Amonkar AJ, Padma PR, Bhide SV (1989) Mutat Res 210:249–253.

    PubMed  CAS  Google Scholar 

  • Andersson HC, Kihlman BA (1987) Hereditas 107:15–25.

    Google Scholar 

  • Ariza RR, Dorado G, Barbancho M, Pueyo C (1988) Mutat Res 201:89–96.

    PubMed  CAS  Google Scholar 

  • Artvinli S (1987) Cytologia 52:189–198.

    CAS  Google Scholar 

  • Ashraf M, Bassett MJ (1986) Can J Genet Cytol 28:574–580.

    Google Scholar 

  • Ashraf M, Bassett MJ (1987) Theor Appl Genet 74:346–360.

    Google Scholar 

  • Badr A (1986) Cytologia 51:571–577.

    CAS  Google Scholar 

  • Badr A, Ibrahim AG (1987) Cytologia 52: 293–302.

    CAS  Google Scholar 

  • Badr A, Hamoud MA, Haroun SA (1986) Egypt J Genet Cytol 15:313–322.

    Google Scholar 

  • Balansky RM, Blagoeva PM, Mircheva ZI (1987) Mutat Res 188:13–19.

    PubMed  CAS  Google Scholar 

  • Balansky RM, Blagoeva PM, Mircheva ZI (1988) Mutat Res 208:237–241.

    PubMed  CAS  Google Scholar 

  • Bates GW, Hasenkampf CA, Contolini CL, Piastuch WC (1987) Theor Appl Genet 74:718–726.

    Google Scholar 

  • Best RG, McKenzie WH (1988) Mutat Res 206:227–233.

    PubMed  CAS  Google Scholar 

  • Bhatia CR, Mathews H (1988) J Hered 79:122–124.

    Google Scholar 

  • Breiman A, Rotem-Abarbanell D, Karp A, Shaskin H (1987) Theor Appl Genet 74:104–112.

    CAS  Google Scholar 

  • Broertjes C, van Harten AM (1987) In: Abbott AJ, Atkin RK (eds) Improving vegetatively propagated crops. pp 335–348. Academic Press, London.

    Google Scholar 

  • Bull P, Yanez L, Nervi F (1987) Mutat Res 187:113–117.

    PubMed  CAS  Google Scholar 

  • Chang R, Tai W, Fan Z (1987) Genome 29:174–179.

    Google Scholar 

  • Cajelli E, Canonero R, Martelli A, Brambilla G (1987) Mutat Res 190:47–50.

    PubMed  CAS  Google Scholar 

  • Charpentier A, Feldman M, Cauderon Y (1986) Can J Genet Cytol 28:783–788.

    Google Scholar 

  • Cortés F, Mateos S, Ortiz T, PiÅ„ero J (1987) Mutat Res 180:183–188.

    PubMed  Google Scholar 

  • Curvall M, Romert L, Norlén E, Enzell CR (1987) Mutat Res 188:105–110.

    PubMed  CAS  Google Scholar 

  • Deaton WR, Collins GB, Nielsen MT (1986) Euphytica 35:33–40, 41-48.

    Google Scholar 

  • De Pace C, Montebove L, Delre V, Jan CC, Qualset CO, Scarascia Mugnozza GT (1988) Theor Appl Genet 76:513–529.

    Google Scholar 

  • Devadas N, Rajam MV, Subhash K (1986) Cytologia 51:645–653.

    CAS  Google Scholar 

  • Devadas N, Sadanandam A, Rao KR, Subhash K (1987) Cytologia 52:235–241

    CAS  Google Scholar 

  • Deyu L, Lähdetie J, Parvinen M (1988) Mutat Res 208:69–72.

    Google Scholar 

  • Dille JE, King EN, Bright M (1986) Cytologia 51:489–492.

    CAS  Google Scholar 

  • Doré C, Cauderon Y, Chueca MC (1988) Genome 30:511–518.

    Google Scholar 

  • Ehlenfeldt MK, Helgeson JP (1987) Theor Appl Genet 73:395–402.

    Google Scholar 

  • Eizenga GC (1987) Euphytica 36:175–179.

    CAS  Google Scholar 

  • Ene-Obong EE, Amadi OC (1987) Cytologia 52:469–474.

    Google Scholar 

  • Engvild KC (1987) Theor Appl Genet 74:711–713.

    Google Scholar 

  • Fahleson J, RÃ¥hlén L, Glimelius K (1988) Theor Appl Genet 76:507–512.

    Google Scholar 

  • Fernández-Peralta AM, González-Aguilera JJ (1985) Caryologia 38:57–65.

    Google Scholar 

  • Figueiras AM, Candela M, Lacadena JR (1985) Theor Appl Genet 69:659–663.

    Google Scholar 

  • Fish N, Karp A, Jones MGK (1988) Theor Appl Genet 76:260–266.

    Google Scholar 

  • Fiskesjö G (1988) Mutat Res 197:243–260.

    PubMed  Google Scholar 

  • Fujimoto T, Ose Y, Sato T, Matsuda H, Nagase H, Kito H (1987) Mutat Res 178:211–216.

    CAS  Google Scholar 

  • Fung VA, Cameron TP, Hughes TJ, Kirby PE, Dunkel VC (1988) Mutat Res 204:219–228.

    PubMed  CAS  Google Scholar 

  • Ganapathi A, Rao GR (1986) Cytologia 51:757–762.

    Google Scholar 

  • Ganapathi A, Rao GR (1987) Genome 29:639–642.

    Google Scholar 

  • Gangadevi T, Rao PN, Satyanarayana KV (1988) J Hered 79:119–122.

    Google Scholar 

  • Gill RS, Dhaliwal HS, Multani DS (1988) Theor Appl Genet 75:912–916.

    Google Scholar 

  • Gleba YY, Hinnisdaels S, Sidorov VA, Kaleda VA, Porokonny AS, Boryshuk NV, Cherep NN, Negrutin I, Jacobs M (1988) Theor Appl Genet 76:760–766.

    Google Scholar 

  • Gottschalk W (1986) Pulse Crops Newslett 6:4–7.

    Google Scholar 

  • Gottschalk W (1987a) Biol Zentralbl 106:207–218.

    Google Scholar 

  • Gottschalk W (1987b) Cytologia 52:653–656.

    Google Scholar 

  • Gottschalk W (1988a) Theor Appl Genet 75:344–349.

    Google Scholar 

  • Gottschalk W (1988b) Angew Bot 62:1–8.

    Google Scholar 

  • Gottschalk W (1988c) Legume Res 11:32–34.

    Google Scholar 

  • Grant JE, Pullen R, Brown AHD, Grace JP, Gresshoff PM (1986) J Hered 77:423–426.

    Google Scholar 

  • Graybosch RA, Palmer RG (1987) J Hered 78:66–70.

    Google Scholar 

  • Gaybosch RA, Palmer RG (1988) Am J Bot 75:144–156.

    Google Scholar 

  • Groose RW, Weigelt HD, Palmer RG (1988) J Hered 79:263–267.

    Google Scholar 

  • Grosser JW, Gmitter FG, Chandler JL (1988) Theor Appl Genet 75:397–401.

    Google Scholar 

  • Gudu S, Gupta VK (1988) Euphytica 37:23–26.

    Google Scholar 

  • Gupta PK, Balyan HS, Fedak G (1988) Genome 30:525–528.

    Google Scholar 

  • Gupta RC, Gill BS (1985) J Cytol Genet 20:123–130.

    Google Scholar 

  • Guri A, Sink KC (1988) Theor Appl Genet 76:490–496.

    CAS  Google Scholar 

  • Heath-Pagliuso S, Pullmann J, Rappaport L (1988) Theor Appl Genet 75:446–451.

    Google Scholar 

  • Heindorff K, Rieger R, Michaelis A, Takehisa S (1987) Mutat Res 190:131–135.

    CAS  Google Scholar 

  • Hoang-Tang, Liang GH (1988) Theor Appl Genet 76:277–284.

    Google Scholar 

  • Huang H-C, Chen C-C (1988) J Hered 79:28–32.

    Google Scholar 

  • Ikeda H (1987) J Sci Hiroshima Univ Ser B Div 2, 21:67–104.

    Google Scholar 

  • International Atomic Energy Agency, Vienna (1988a) Improvement of grain legume production using induced mutations. 524 pp.

    Google Scholar 

  • International Atomic Energy Agency, Vienna (1988b) Mutation Breed Newslett 31:8–38.

    Google Scholar 

  • International Atomic Energy Agency, Vienna (1988c) Mutation Breed Newslett 32:19–33.

    Google Scholar 

  • International Atomic Energy Agency, Vienna (1988d) Semi-dwarf cereal mutants and their use in cross-breeding III. 256 pp.

    Google Scholar 

  • Jain AK, Sarbhoy RK (1987) Cytologia 52: 47–53 and 55-61.

    CAS  Google Scholar 

  • Jain AK, Shimoi K, Nakamura Y, Kada T, Hara Y, Tomita I (1989) Mutat Res 210:1–8.

    PubMed  CAS  Google Scholar 

  • Janse J (1987) Theor Appl Genet 74:317–327.

    Google Scholar 

  • Jansson T, Curvall M, Hedin A, Enzell CR (1988) Mutat Res 206:17–24.

    PubMed  CAS  Google Scholar 

  • Jensen KB, Dewey DR, Asay KH (1986) Can J Genet Cytol 28:770–776.

    Google Scholar 

  • Jørgensen RB, von Bothmer R (1988) Hereditas 108:207–212.

    Google Scholar 

  • Jørgensen JH, Jensen HP (1986) Hereditas 105:71–72.

    Google Scholar 

  • Kabir G, Alam S (1986) Cytologia 51:885–892.

    CAS  Google Scholar 

  • Kaul BL (1986) Cytologia 51:587–592.

    CAS  Google Scholar 

  • Kaul MLH (1988) Male sterility in higher plants. Springer, Berlin Heidelberg New York 1005 pp.

    Google Scholar 

  • Kawahara T (1986) Wheat Inform Serv 63:1–6.

    Google Scholar 

  • Kenton A, Davies A, Jones K (1987) Chromosoma 95:424–434.

    Google Scholar 

  • Kerby K, Kuspira J (1987) Genome 29:722–737.

    Google Scholar 

  • Kerby K, Kuspira J (1988) Genome 30:36–43.

    Google Scholar 

  • Khalatkar AS, Bhargava YR (1986) Cytologia 51:665–669.

    CAS  Google Scholar 

  • Khawaja HIT, Ellis JR (1987) Genome 29:859–866.

    Google Scholar 

  • Kimber G, Feldman M (1987) Wild wheat: an introduction. Coll Agric Univ Missouri, Columbia. Special Rep 353:142 pp.

    Google Scholar 

  • Konishi T, Linde-Laursen I (1988) Theor Appl Genet 75:237–243.

    Google Scholar 

  • Krishna TG, Mitra R (1988) Euphytica 37:47–52.

    Google Scholar 

  • Kumar H, Nigam N (1986) Egypt J Genet Cytol 15:251–262.

    Google Scholar 

  • Kumar RS, Singh UP, Singh RM, Singh RB (1987) Cytologia 52:559–569.

    Google Scholar 

  • Lacey CND, Campbell AI (1987). In: Abbott AJ, Atkin RK (eds) Improving vegetatively propagated crops, pp 349–362, Academic Press, London.

    Google Scholar 

  • Lange W, Linde-Laursen I, Larsen J, Ljungberg A, Ellerström S (1987) Theor Appl Genet 73:635–645.

    Google Scholar 

  • Langten FA (1987). In: Abbott AJ, Atkin RK (eds): Improving vegetatively propagated crops, pp 159–180, Academic Press, London.

    Google Scholar 

  • Lapitan NLV, Sears RG, Rayburn AL, Gill BS (1986) J Hered 77:415–419.

    Google Scholar 

  • Lashermes P, Beckert M (1988) Theor Appl Genet 76:405–410.

    Google Scholar 

  • Laurie DA, Bennett MD (1988) Theor Appl Genet 76:393–397.

    Google Scholar 

  • Lavania UC (1986) Theor Appl Genet 73:292–298.

    Google Scholar 

  • Lee H, Lin J-Y (1988) Mutat Res 204:229–234.

    PubMed  CAS  Google Scholar 

  • Leelavathi S, Reddy VS, Sen SK (1987) Euphytica 36:215–219.

    Google Scholar 

  • Lin B-Y, Coe EH Jr (1986) Can J Genet Cytol 28:831–834.

    Google Scholar 

  • Linde-Laursen I (1988) Hereditas 108:65–76.

    Google Scholar 

  • Ling DH, Ma ZR, Chen WY, Chen MF (1987) Theor Appl Genet 75:127–131.

    Google Scholar 

  • Löfroth G (1989) Mutat Res 222:73–80.

    PubMed  Google Scholar 

  • Lozano R, Rejón MR (1986) Can J Genet Cytol 28:348–357.

    Google Scholar 

  • Lundqvist U, Lundqvist A (1988a) Hereditas 108:1–12.

    CAS  Google Scholar 

  • Lundqvist U, Lundqvist A (1988b) Hereditas 108:13–26.

    Google Scholar 

  • Madeiros M das Gracas, Takahashi CS (1987) Cytologia 52:255–259 and 261-265.

    Google Scholar 

  • Mandai A (1987) Hereditas 106:189–193.

    Google Scholar 

  • Menzel MY, Richmond KL, Dougherty BJ (1985) J Hered 76:406–414.

    CAS  Google Scholar 

  • Menzel MY, Hasenkampf CA, Dougherty BJ, Richmond KL, Campbell LB (1986) J Hered 77:189–201.

    Google Scholar 

  • Merker A (1988) Hereditas 108:267.

    Google Scholar 

  • Metz SG, Sharma HC, Armstrong TA, Mascia PN (1988) Genome 30:177–181.

    Google Scholar 

  • Michaelis A, Rieger R, Nicoloff H (1988) Mutat Res 208:83–86.

    PubMed  CAS  Google Scholar 

  • Micke A (1988). In: Improvement of grain legume production using induced mutations, pp 1–51. International Atomic Energy Agency, Vienna.

    Google Scholar 

  • Micke A, Donini B, Maluszinski M (1987) Trop Agric 64:259–278.

    Google Scholar 

  • Milo J, Levy A, Palevitch D, Ladizinsky G (1987) Euphytica 36:361–367.

    CAS  Google Scholar 

  • Morris KLD, Gill BS (1987) Genome 29:247–252.

    Google Scholar 

  • Murthy TGK, Tiwari SP (1987) Cytologia 52:667–670.

    Google Scholar 

  • Myers JR, Gritton ET (1988) Euphytica 38:165–174.

    Google Scholar 

  • Nagai C, Ahloowalia BS, Heinz DJ, Tew TL (1986) Euphytica 35:1029–1038.

    Google Scholar 

  • Newell CA, Delannay X, Edge ME (1987) J Hered 78:301–306.

    Google Scholar 

  • Norrmann GA, Quarin CL (1987) Genome 29:340–344.

    Google Scholar 

  • O’Connell MA, Hanson MR (1987) Theor Appl Genet 75:83–89.

    Google Scholar 

  • Oiejniczak J, Patyna H (1987) Wheat Inform Serv 64:10–13.

    Google Scholar 

  • Panda RC, Kumar OA, Raja Rao KG (1987) J Hered 78:101–104.

    CAS  Google Scholar 

  • Pental D, Mukhopadhyay A, Grover A, Pradhan AK (1988) Theor Appl Genet 76:237–243.

    Google Scholar 

  • Peryt B, Miloszewska J, Tudek B, ZieleÅ„ska M, Szymczyk T (1988) Mutat Res 206:221–225.

    PubMed  CAS  Google Scholar 

  • Picard E, Hours C, Grégoire S, Phan TH, Meunier JP (1987) Theor Appl Genet 74:289–297.

    CAS  Google Scholar 

  • Pijnacker LP, Ferwerda MA, Puite KJ, Roest S (1987) Theor Appl Genet 73:878–882.

    Google Scholar 

  • Primard C, Vedel F, Mathieu C, Pelletier G, Chèvre AM (1988) Theor Appl Genet 75:546–552.

    CAS  Google Scholar 

  • Rao BV, Sharma CBSR, Rao BGS (1987) Cytologia 52:365–371.

    CAS  Google Scholar 

  • Rao PN, Nirmala A, Ranganadham P (1988) Theor Appl Genet 75:340–343.

    Google Scholar 

  • Ray DT, Sherman JD (1988) J Hered 79:397–399.

    Google Scholar 

  • Rieger R, Michaelis A (1988) Mutat Res 209:141–144.

    PubMed  CAS  Google Scholar 

  • Rieger R, Michaelis A, Schubert I, Veleminský J, Gichner T, Angelis KJ (1988) Mutat Res 208:101–104.

    PubMed  CAS  Google Scholar 

  • Rines HW, Johnson SS (1988) Genome 30:1–7.

    Google Scholar 

  • Ryan SA, Larkin PJ, Ellison FW (1987) Theor Appl Genet 74:77–82.

    Google Scholar 

  • Ryan SA, Scowcroft WR (1987) Theor Appl Genet 73:459–464.

    CAS  Google Scholar 

  • Sakai Y, Nagase H, Ose Y, Sato T, Kawai M, Mizuno M (1988) Mutat Res 206: 327–334.

    PubMed  CAS  Google Scholar 

  • Salomaa S, Tuominen J, Skyttä E (1988) Mutat Res 204:173–183.

    PubMed  CAS  Google Scholar 

  • Sangowawa BG, Choudhuri HC (1986) Cytologia 51:767–776.

    Google Scholar 

  • Sapre AB, Barve SS (1987) Cytologia 52:323–330.

    Google Scholar 

  • Sawhney RN (1987) Euphytica 36:49–54.

    Google Scholar 

  • Saxena M, Gupta SN (1987) Cytologia 52:787–791.

    Google Scholar 

  • Schimmer O, Häfele F, Krüger A (1988) Mutat Res 206:201–208.

    PubMed  CAS  Google Scholar 

  • Schubert I, Rieger R, Michaelis A (1988) Theor Appl Genet 76:64–70.

    Google Scholar 

  • Schweizer G, Ganal M, Ninnemann H, Hemleben V (1988) Theor Appl Genet 75:679–684.

    CAS  Google Scholar 

  • Sen S, Talukder G, Sharma A (1986) Nucleus 29:169–182.

    Google Scholar 

  • Shahla A, Tsuchiya T (1986) Can J Genet Cytol 28:1026–1033.

    Google Scholar 

  • Shankel DM, Hartman PS (eds) (1986) Antimutagenesis and anticarcinogenesis mechanisms. Plenum, New York, 618 pp.

    Google Scholar 

  • Singh RJ, Hymowitz T (1988) Theor Appl Genet 76:705–711.

    Google Scholar 

  • Singh J, Raghuvanshi SS (1987) Cytologia 52:493–497.

    Google Scholar 

  • Singh MP, Kalia CS, Puri RP (1985) J Cytol Genet 20:131–146.

    Google Scholar 

  • Singh RJ, Kollipara KP, Hymowitz T (1987) Genome 29:49(M97.

    CAS  Google Scholar 

  • Singh AK, Unrig H, Salamini F (1988) Genome 30:347–351.

    Google Scholar 

  • Sofradžija A, Hadžselimović R, Zovko D (1988) Genetika Beograd 20:183:189.

    Google Scholar 

  • Strother JL, Brown LE (1988) Am J Bot 75:1097–1098.

    Google Scholar 

  • Subrahmanyam NC, von Bothmer R (1987) Hereditas 106:119–127.

    Google Scholar 

  • Sun M, Ganders FR (1987) Am J Bot 74:209–217.

    Google Scholar 

  • Sundberg E, Landgren M, Glimelius K (1987) Theor Appl Genet 75:96–104.

    Google Scholar 

  • Takeuchi M, Hara M, Inoue T, Kada T (1988) Mutat Res 204:263–267.

    PubMed  CAS  Google Scholar 

  • Tariq M, Pannar NS, Qureshi S, El-Feraly FS, Al-Meshal IA (1987) Mutat Res 190:153–157.

    PubMed  CAS  Google Scholar 

  • Terada R, Yamashita Y, Nishibayashi S, Shimamoto K (1987) Theor Appl Genet 73:379–384.

    Google Scholar 

  • Thomas HM, Pickering RA (1988) Theor Appl Genet 76:93–96.

    Google Scholar 

  • Tilney-Bassett RAE (1987). In: Abbott AJ, Atkin RK (eds) Improving vegetatively propagated crops, pp 271–284, Academic Press, London.

    Google Scholar 

  • Toriyama K, Hinata K, Sasaki T (1986) Theor Appl Genet 73:16–19.

    Google Scholar 

  • Uijtewaal BA, Huigen DJ, Hermsen JGTh (1987) Theor Appl Genet 73:751–758.

    Google Scholar 

  • Vaidya SM, Khamankar YG (1987) Egypt J Genet Cytol 16:161–170.

    Google Scholar 

  • Van der Meer QP (1987) Euphytica 36:927–931.

    Google Scholar 

  • Van Geyt J, Speckmann GJ Jr, D’Halluin K, Jacobs M (1987) Theor Appl Genet 73:920–925.

    Google Scholar 

  • Vari AK, Bhowal JG (1986) Cytologia 51:679–692.

    Google Scholar 

  • Vari AK, Bhowal JG (1987) Cytologia 52:833–840.

    Google Scholar 

  • Von Bothmer R, Flink J, Landström T (1988a) Hereditas 108:141–148.

    Google Scholar 

  • Von Bothmer R, Flink J, Landström T (1988b) Genome 30:479–485.

    Google Scholar 

  • Walther F, Sauer A (1986) Acta Hort 189:37–46.

    Google Scholar 

  • Wang RR-C (1987) Genome 29:738–743.

    Google Scholar 

  • Wang RR-C, Hsiao C (1986) Can J Genet Cytol 28:947–953.

    Google Scholar 

  • Whong W-Z, Stewart JD, Wang Y-K, Ong T (1987) Mutat Res 177:241–246.

    PubMed  CAS  Google Scholar 

  • Wolff G (1985) Nucleus 28:3–7.

    Google Scholar 

  • Wolff G (1987) Angew Bot 61:393–409.

    Google Scholar 

  • Wright RL, Somers DA, McGraw RL (1987) Theor Appl Genet 75:151–156.

    Google Scholar 

  • Yadava KS, Singh AK, Roy RP, Jha UC (1986) Nucleus 29:58–62.

    Google Scholar 

  • Yoshida M, Kawakami S, Tanaka R (1986) Chromosome Inform Serv 41:3–4.

    Google Scholar 

  • Zeller FJ, CeremeÅ„o M-C, Friebe B (1987) Genome 29:58–62.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gottschalk, W. (1989). Mutation: Higher Plants. In: Behnke, HD., Esser, K., Kubitzki, K., Runge, M., Ziegler, H. (eds) Progress in Botany. Progress in Botany/Fortschritte der Botanik, vol 51. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-75154-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-75154-7_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-75156-1

  • Online ISBN: 978-3-642-75154-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics