The Evolution of Genes and Pseudogenes for Some Chloroplast Ribosomal Proteins. Transposition and Recombination Lead to Different Fates in Different Genomes

  • C. M. Bowman
Conference paper
Part of the NATO ASI Series book series (volume 55)


Transposition events have created chloroplast-DNA-derived ribosomal protein pseudogenes in chloroplast (Bowman et al 1988, Shimada and Sugiura 1989) and mitochondrial (eg Moon et al 1988) genomes of some higher plants. Examining the role of homologous recombination in the evolutionary fate of these ribosomal protein genes and their pseudogenes, can offer some insight into the possible influence of homologous recombination on the evolution of organelle genomes in general.


Homologous Recombination Inverted Repeat Chloroplast Genome Ribosomal Protein Gene Organelle Genome 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature references

  1. Bowman CM, Dyer TA (1986) The location and possible evolutionary signicance of small dispersed repeats in wheat ctDNA Curr Genet 10:931–941CrossRefGoogle Scholar
  2. Bowman CM, Barker RF, Dyer TA (1988) In wheat ctDNA, segments of ribosomal protein genes are dispersed repeats, probably conserved by nonreciprocal recombination. Curr Genet 14:127–136PubMedCrossRefGoogle Scholar
  3. Deng X-W, Wing RA, Gruissem W (1989) The chloroplast genome exists in multimeric forms. Proc Natl Acad Sci USA 86:4156–4160PubMedCrossRefGoogle Scholar
  4. Dover GA, Tautz G (1986) Conservation and divergence in multigene families: alternatives to selection and drift. Phil Trans R Soc Lond B 312:275–289CrossRefGoogle Scholar
  5. Ellis J (1982) Promiscuous DNA-chloroplast genes inside plant mitochondria. Nature 299:678–679PubMedCrossRefGoogle Scholar
  6. Hiratsuka J, Shimada H, Whittier R, Ishibashi T, Sakamoto M, Mori M, Kondo C, Honji Y, Sun C-R, Meng B-Y, Li Y-Q, Kanno A, Nishizawa Y, Hirai A, Shinozaki K, Sugiura M (1989) The complete sequence of the rice (Oryza sativa) chloroplast genome: Intermolecular recombination between distinct tRNA genes accounts for a major plastid DNA inversion during the evolution of the cereals. Mol Gen Genet 217:185–194PubMedCrossRefGoogle Scholar
  7. Kolodner R, Tewari KK (1979) Inverted repeats in chloroplast DNA from higher plants. Proc Natl Acad Sci USA 76:41–45PubMedCrossRefGoogle Scholar
  8. Kourilsky P (1986) Molecular mechanisms for gene conversion in higher cells. TIG 2:60–63CrossRefGoogle Scholar
  9. Lonsdale DM, Brears T, Hodge TP, Melville SE, Rottman WH (1988) The plant mitochondrial genome: homologous recombination as a mechanism for generating heterogeneity. In: Mitochondrial Biogenesis. Leaver CJ, Lonsdale DM (eds) Phil Trans R Soc Lond B ppl49–163Google Scholar
  10. McLaughlin WE, Larrinua, IM (1988) The sequence of the maize plastid encoded rp123 locus. Nucl Acids Res 16:8183PubMedCrossRefGoogle Scholar
  11. Medgyesy P, Fejes E, Maliga P (1985) Interspecific chloroplast recombination in a Nicotiana somatic hybrid. Proc Natl Acad Sci USA 82:6960–6964PubMedCrossRefGoogle Scholar
  12. Moon E, Kao T-H, Wu R (1988) Rice mitochondrial genome contains a rearranged chloroplast gene cluster. Mol Gen Genet 213:247–253PubMedCrossRefGoogle Scholar
  13. Palmer JD (1983) Chloroplast DNA exists in two orientations. Nature 301:92–93CrossRefGoogle Scholar
  14. Palmer JD (1990) Contrasting modes and tempos of genome evolution in land plant organelles. TIG 6:115–120PubMedCrossRefGoogle Scholar
  15. Shimada H, Sugiura M (1989) Pseudogenes and short repeated sequences in the rice chloroplast genome. Curr Genet 16:293–301PubMedCrossRefGoogle Scholar
  16. Shinozaki K, Ohme M, Tanaka M, Wakasugi T, Hayashida N, Matsubayashi T, Zaita N, Chunwongse J, Obokata J, Shinozaki KY, Ohto C, Torazawa K, Meng BY, Sugita M, Deno H, Kamogashira T, Yamada K, Kusuda J, Takaiwa F, Kato A, Tohdoh N, Shimada H, Sugiura M (1986) The complete nucleotide sequence of the tobacco chloroplast genome: its gene organisation and expression. EMBO J 5:2043–2049PubMedGoogle Scholar
  17. Stern B, Lonsdale DM (1982) Mitochondrial and chloroplast genomes of maize have a 12-kilobase DNA sequence in common. Nature 299:698–702PubMedCrossRefGoogle Scholar
  18. Sjostak JW, Orr-Weaver TL, Rothstein RJ, Stahl FW (1983) The double-strand-break-repair model for recombination. Cell 33:25–35CrossRefGoogle Scholar
  19. Thanh ND, Medgyesy P (1989) Limited chloroplast gene transfer via recombination overcomes plastome-genome incompatibility between Nicotiana Tabacum and Solanum tuberosum. Plant Mol Biol 12:87–93CrossRefGoogle Scholar
  20. Wolfe KH, Li W-H, Sharp PM (1987) Rates of nucleotide substitution vary greatly among plant mitochondrial, chloroplast and nuclear DNAs. Proc Natl Acad Sci USA 84:9054-9058PubMedCrossRefGoogle Scholar
  21. Zurawski G, Clegg MT (1987) Evolution of higher-plant chloroplast DNA-encoded genes: implications for structure-function and phylogenetic studies. Ann Rev Plant Physiol 38:391–418CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • C. M. Bowman
    • 1
  1. 1.IPSR, Cambridge LaboratoryCentre for Plant Science ResearchColney Lane, NorwichUK

Personalised recommendations