The Structure of the Antibiotic Binding Sites in Bacterial Ribosomes

  • Juan P. G. Ballesta
Conference paper
Part of the NATO ASI Series book series (volume 55)


With only a few exceptions, antibiotics inhibit protein synthesis by binding to the ribosome and blocking some of the several functions that the particle performs in this metabolic process (Vazquez, 1979; Gale et al. 1981). The antibiotic binding sites must be located in regions of the ribosomal particle closely related to the inhibited activity and, obviously, the definition of the structure of these interaction sites will provide important information for the understanding of both the drug mode of action and the function of the ribosome.


Domain Versus Lactone Ring Photoaffinity Label Drug Binding Site Ribosome Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arevalo, M.A., Tejedor, F., Polo, F. and Ballesta, J.P.G. (1988) Protein components of the erythromycin binding site in bacterial ribosomes J. Biol. Chem. 263: 58–63.PubMedGoogle Scholar
  2. Ballesta, J.P.G. and Lazaro, E. (1990) Peptidyl transferase inhibitors: Structure-activity relationship analysis by chemical modification p502–510 In The Ribosome. Structure, Function and Evolution (Hill, W.E., Dahlberg, A., Garret, R.A., Moore, P.B., Schelissinger, D. and Warner, J.R. eds) American Society for Microbiology, Washington, D.C.Google Scholar
  3. Bernabeu, C., Vazquez, D, and Ballesta, J.P.G. (1977) The involvement of protein L16 on ribosomal peptidyl transferase activity. Eur. J. Biochem. 79: 469–472.PubMedCrossRefGoogle Scholar
  4. Brimacombe, R., Atmadja, J., Stiege W. and Schüler, D. (1988) A detailed model of the three-dimensional structure of E. coli 16S ribosomal RNA in situ in the 30S subunit. J. Mol. Biol. 199:115–136.PubMedCrossRefGoogle Scholar
  5. Calcutt, M.J. and Cundliffe, E. (1990) Resistance to pactamycin in clones of Streptomyces liovidans containing DNA from pactamycin-producing Streptomyces pactum. Gene, 93, 85–89.PubMedCrossRefGoogle Scholar
  6. Contreras, A. and Vazquez, D. (1977) Cooperative and antagonistic interactions of peptidyl-tRNA and antibiotics. Eur. J. Biochem. 74, 538–547.Google Scholar
  7. Cooperman, B.S. (1980) Functional sites on E. coli ribosomes as defined by affinity labeling p 531–554 In Ribosomes. Structure, Function and Genetics (Chamblis, G., Craven, G.R., Davies, J., Davis K., Kahan, L and Nomura, M. eds.) pp531–554. University Park Press, Baltimore, USAGoogle Scholar
  8. Cundliffe, E. (1990) Recognition sites for antibiotics within rRNA p 479–490 in The Ribosome. Structure, Function and Evolution (Hill, W.E., Dahlberg, A., Garret, R.A., Moore, P.B., Schelissinger, D. and Warner, J.R. eds) American Society for Microbiology, Washington, D.C.Google Scholar
  9. Cundliffe, E. (1989) How antibiotic-producing organisnms avoid suicide Ann. Rev. Microbiol. 43: 207–233.CrossRefGoogle Scholar
  10. Cundliffe, E. and Thompson, J. (1979) Ribosome methylation and resistance to thiostrepton. Nature 278, 859–861.PubMedCrossRefGoogle Scholar
  11. Douthwaite, S., Prince, J.B. and Noller, H.F. (1985) Evidence for functional interaction between domains II and V of 23S ribosomal RNA from an erythromycin-resistant mutant Proc. Nat. Acad. Sci. USA 82: 8330–8334.PubMedCrossRefGoogle Scholar
  12. Egebjerg, J., Douthwaite, S. and Garret, R.A. (1989) Antibiotic interactions at the GTPase-associated centre within Escherichia coli 23S rRNA EMBO J. 8: 607–611.PubMedGoogle Scholar
  13. Ettayebi, M., Prasad, S.M. and Morgan, E.A. (1985) Chloramphenicol-erythromycin resistance mutations in a 23S rRNA gene of Escherichia coli J. Bacteriol. 162: 551–557.PubMedGoogle Scholar
  14. Gale, E.F., Cundliffe, E., Reynolds, P.E., Richmond, M.H. and Waring, M.J. (1981) The molecular basis of antibiotic action, John Wiley and Sons, London and New York.Google Scholar
  15. Girshovich, A.S., Bochkareva, E.S. and Vasiliev V.D.(1986) Localization of elongation factor Tu on the ribosome. FEBS Lett. 197:192–198.PubMedCrossRefGoogle Scholar
  16. Herr, W., Chapman, N.M. and Noller, H.F. (1979) Mechanism of ribosomal subunit association: Discrimination of specific sites in 16S RNA essential for association activity. J. Mol. Biol. 130:433–449.PubMedCrossRefGoogle Scholar
  17. Hummel, H. and Böck, A. (1987) Thiostrepton resistance mutations in the gene for 232S ribosomal RNA on halobacteria Biochimie 69: 857–861.PubMedCrossRefGoogle Scholar
  18. Jimenez, A. and Vazquez, D. (1975) Quantitative binding of antibiotics to ribosomes from a yeast mutant altered on the Peptidyl Transferase center Eur. J. Biochem. 54, 483–492.PubMedCrossRefGoogle Scholar
  19. Kirst, H.A., toth, J.E., Debono, M., Willard, K.E., Truedell, B.A., Ott, J.L, Counter, F.T., Felty-Duckworth, A.M. and Pekarek, R.S. (1988) Synthesis and evaluation of tylosin-related macrolides modified at the aldehyde function: a new series of orally effective antibiotics J. Med. Chem. 31, 1631–1641.PubMedCrossRefGoogle Scholar
  20. Moazed, D. and Noller, H.F. (1987a) Interaction of antibiotics with functional sites in 16S ribosomal RNA Nature 327: 389–394.PubMedCrossRefGoogle Scholar
  21. Moazed D. and Noller, H.F. (1987b) Chloramphenicol, erythromycin, carbomycin, and vernamycin B protect overlaping sites in the peptidyl transferase region of 23S ribosomal RNA Biochimie 69: 879–884.PubMedCrossRefGoogle Scholar
  22. Oakes, M.I. and Lake J.A. (1990) DNA-hybridization electron microscopy: localization of five regions of 16S rRNA on the surface of the 30S ribosomal subunit. J. Mol. Biol. 211: 897–906.PubMedCrossRefGoogle Scholar
  23. Oakes, M.I., Kahan, L and Lake, J.A. (1990) DNA-hybridization electron microscopy: tertiary structure of 16S rRNA. J. Mol. Biol. 211:907–918.PubMedCrossRefGoogle Scholar
  24. Pardo, D. and Rosset, R. (1977) Genetic dtudies of erythromycin resistant mutants of Escherichia coli Mol. Gen. Genet. 156,267–271.PubMedCrossRefGoogle Scholar
  25. Raue, H.A., Klootwijk, J. and Musters W. (1988) Evolutionary conservation of structure anf function of high molecular weight ribosomal RNA Prag. Biophys. Molec. Biol. 51:77–129.CrossRefGoogle Scholar
  26. Sigmund, C.D., Ettayebi, M. and Morgan, E.A. (1984) Antibiotic resistance mutations in 16S and 23S ribosomal RNA genes of Escherichia coli Nucleic Acids Res. 12, 4653–4663.PubMedCrossRefGoogle Scholar
  27. Sor, F., and Fukuhara, H. (1982) Identification of two erythromycin resistance mutations in the mitochondrial gene coding for the large ribosomal RNA in yeast Nucleic Acids Res. 10: 6571–6577.PubMedCrossRefGoogle Scholar
  28. Sor, F. and Fukuhara, H. (1984) Erythromycin and spiramycin resistance mutations of yeast mitochondria: nature of the rib2 locus in the large ribosomal RNA Nucleic Acids Res 12: 8313–8318.PubMedCrossRefGoogle Scholar
  29. Schüler, D. and Brimacombe R. (1988) The E. coli 30S ribosomal subunit; an optimized three-dimensional fit between the ribosomal proteins and the 16S RNA. EMBO J. 7:1509–1513PubMedGoogle Scholar
  30. Steiner, G., Kuechler, E. and Barta, A. (1988) Photoaffinity labeling at the peptidyl transferase center reveals two different positions for the A-and P-sites in domain V of 23S rRNA EMBO J. 7, 3949–3955.PubMedGoogle Scholar
  31. Synetos, D., Amils, R. and Ballesta, J.P.G. (1986) Photolabeling of protein components in the pactamycin binding site of rat liver ribosomes Biochim. Biophys. Acta 868, 249–253.PubMedGoogle Scholar
  32. Tapprich, W.E., Goss, D.J. and Dahlberg, A.E. (1989) Mutation at position 791 in Escherichia coli 16S ribosomal RNA affects processes involved in the initiation of protein syntyhesis Proc. Natl. Acad. Sci. USA 86: 4927–4931.PubMedCrossRefGoogle Scholar
  33. Tejedor, F. and Ballesta, J.P.G. (1985) Ribosome structure: binding site of macrolides studied by photoaffinity labeling. Biochemsitry 24: 467–472.CrossRefGoogle Scholar
  34. Tejedor, F., Amils, R. and Ballesta, J.P.G. (1985) Photoaffinity labeling of pactamycin binding site on eubacterial ribosomes Biochemistry, 24: 3667–3672.PubMedCrossRefGoogle Scholar
  35. Tejedor, F. and Bsallesta, J.P.G. (1986) Reaction of some macrolide antibiotics with the ribosome. Labeling of the binding site components Biochemistry 25,7725–7731.PubMedCrossRefGoogle Scholar
  36. Tejedor, F., Amils, R. and Ballesta. J.P.G. (1987) Pactamycin binding site on archaebacterial and eukaryotic ribosomes Biochemistry 26:652–656.CrossRefGoogle Scholar
  37. Teraoka, H. and Nierhaus, K. (1978) Protein L16 induces a conformational change when incorporated into an L16-deficient core derived from Escherichia coli ribosomes. FEBS Lett. 88: 223–227.PubMedCrossRefGoogle Scholar
  38. Thompson, J., Cundliffe, E. and Stark, M. (1979) Binding of thiostrepton to a complex of 23S rRNA with ribosomal protein L11. Eur. J. Biochem. 98: 261–265.PubMedCrossRefGoogle Scholar
  39. Thompson, J., Schmidt, F. and Cundliffe, E. (1982) Site of action of a ribosomal RNA methylase conferring resistance to thiostrepton. J. Biol. Chem. 257: 7915–7917.PubMedGoogle Scholar
  40. Thompson, J., Cundliffe, E. and Dahlberg, A.E. (1988) Site-directed mutagenesis of Escherichia coli 23S ribosomal RNA at position 1067 within the GTPase hydrolysis center. J. Mol. Biol. 203, 457–465.PubMedCrossRefGoogle Scholar
  41. Vester, B. and Garrett, R.A. (1987) A plasmid-coded and site-directed mutation in Escherichia coli 23S RNA that confers resistance to erythromycin: implications for the mechanism of action of erythromycin. Biochimie 69, 891–900.PubMedCrossRefGoogle Scholar
  42. Vester, B. and Garrett, R.A. (1988) The importance of highly conserved nucleotides in the binding region of chloramphenicol at the peptidyl transferase centre of Escherichia coli 23S ribosomal RNA. EMBO J. 7, 3577–3587.PubMedGoogle Scholar
  43. Vazquez, D. (1979) Inhibitors of protein synthesis. Mol. Biol. Biochem.Biophys. 30, 1–312.Google Scholar
  44. Walleczek, J., Schüler, D., Stöffler-Meilicke, M., Brimacombe, R. and Stöffler, G. (1988) A model for the spatial arrangement of the proteins in the large subunit of the Escherichia coli ribosome. EMBO J. 7, 3571–3576.PubMedGoogle Scholar
  45. Wittmann, H.G., Stöffler, G., Apirion, D., Rosen,L, Tanaka, K., Tamaki, M. Tanaka, R.,Dekio, S., Otaka, E. and Osawa, S. (1973) Biochemical amd genetic studies on two different types of erythromycin resistant mutants of Escherichia coli with altered ribosomal proteins. Mol.Gen Genet. 127, 175–189.PubMedCrossRefGoogle Scholar
  46. Zimmermann, R. (1980) In Ribosomes, Structure, Function and Genetics (Chamblis, G., Craven G.R., Davies, J, Davis, K. Kahan, L and Nomura, M., eds.) pp 135–169. University Park Press, Baltimore, USAGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • Juan P. G. Ballesta
    • 1
  1. 1.Centro de Biologia MolecularCSIC and UAMMadridSpain

Personalised recommendations