Covalent Modification of Creatine Kinase by ATP: Evidence for Autophosphorylation

  • W. Hemmer
  • S. J. Glaser
  • G. R. Hartmann
  • H. M. Eppenberger
  • T. Wallimann
Part of the NATO ASI Series book series (volume 56)

Abstract

Creatine kinase (CK, EC 2.7.3.2) catalyses the reversible reaction:
$${\text{MgATP}}\, + \,{\text{Creatine}}\,{\text{(Cr)}}\, \leftrightarrow \,{\text{MgADP}}\,{\text{ + }}\,{\text{Phosphocreatine}}\,{\text{(PCr)}}\,{\text{ + }}\,{{\text{H}}^{\text{ + }}}$$
(1)
The reaction mechanism has been classified as rapid equilibrium-type with all evidence pointing to a direct, in-line transfer of the phosphoryl group between bound substrates (Kenyon, Reed 1983), without any direct evidence for a covalent phosphoryl-enzyme intermediate. Only one report so far indicated the possibible existence of such a covalent phosphoryl-enzyme intermediate (Molnar, Lorand 1960). Rat brain CK (Mahadevan et al., 1984) and recently also chicken brain-type creatine kinase have been shown to be partially phosphorylated (Quest et al. 1990); in the latter case the phosphorylated CK correlates with enzyme species showing altered kinetic parameters with respect to the Km for PCr.

Keywords

Zinc Magnesium Urea EDTA Manganese 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Erlichmann J, Rangel-Aldao R, Rosen OM (1983) Reversible autophosphorylation of type II cAMP- dependent protein kinase: distinction between intramolecular and intermolecular reactions. Meth Enzymol 99: 176–186CrossRefGoogle Scholar
  2. Huang KP, Chan KFJ, Singh TJ, Nakabayashi H, Huang FL (1986) Autophosphorylation of rat brain Ca2+-activated and phospholipid-dependent protein kinase. J Biol Chem 261: 12134–12140PubMedGoogle Scholar
  3. James P, Wyss M, Lutsenko S, Wallimann T, Carafoli E (1990) ATP binding site of mitochondrial c reatine kinase: Affinity labelling of Asp-335 with CIRATP. FEBS Letters 273: 139–143PubMedCrossRefGoogle Scholar
  4. Kenyon GL, Reed GH (1983) Creatine kinase: structure-activity relationships. In: Meister A (ed) Adv in Enzymology and Related Areas in Molecular Biology, vol 54. J Wiley & Sons Inc, p 367–425Google Scholar
  5. Mahadevan LC, Whatley SA, Leung TKC, Lim L (1984) The brain isoform of a key ATP-regulating enzyme, creatine kinase, is a phosphoprotein. Biochem J. 222: 139–144PubMedGoogle Scholar
  6. Milner-White EJ, Watts DC (1971) Inhibition of Adenosine 5′-Triphosphate-Creatine Phosphotransferase by Substrate-Anion Complexes. Biochem J 122: 727–740PubMedGoogle Scholar
  7. Molnar J, Lorand L (1960) Phosphoryltransfer with Phosphocreatine or Phosphoenolpyruvate and Adenosinemonophosphate. Fed Proc 19: 260Google Scholar
  8. Nageswara, B. D.; Cohn, Mildret (1981) 31P NMR of enzyme-bound substrates of rabbit muscle creatine kinase. J Biol Chem 256: 1716–1721.Google Scholar
  9. Quest AFG, Soldati T, Hemmer W, Perriard J-C, Eppenberger HM Wallimann T (1990) Phosphorylation of chicken brain-type creatine kinase: effect on a relevant kinetic parameter and gives rise to protein-microheterogeneity in vivo. FEBS Letters 269: 457–464PubMedCrossRefGoogle Scholar
  10. Wallimann T, Schloesser T, Eppenberger HM (1984) Function of M-line-bound creatine kinase as an intramyofibrillar ATP regenerator at the receiving end of the phosphorylcreatine shuttle in muscle. J Biol Chem 259: 5238–5246PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • W. Hemmer
    • 1
  • S. J. Glaser
    • 2
  • G. R. Hartmann
    • 2
  • H. M. Eppenberger
    • 1
  • T. Wallimann
    • 1
  1. 1.Institute for Cell BiologyETH HönggerbergZürichSwitzerland
  2. 2.Institute for BiochemistryLudwig-Maximilians-UniversitätMünchen 2Germany

Personalised recommendations