Post-Transcriptional Control of Gene Expression in Chloroplasts

  • David B. Stern
  • Chen Hsu-Ching
  • Cynthia C. Adams
  • Karen L. Kindle
Part of the NATO ASI Series book series (volume 49)


In higher plants, photosynthetically active chloroplasts differentiate from progenitor organelles that lack chlorophyll and thylakoid membrane structures. Chloroplast development requires light which initiates the coordinate expression of nuclear and chloroplast genes. The mechanisms by which these genes are regulated have been the subject of investigations in many laboratories (for reviews see Mullet, 1988; Tobin and Silverthorne, 1985).


Chloroplast Gene Spinach Chloroplast Exonuclease Activity atpB Gene Glycerol Gradient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bardwell JCA, Regnier P, Chen S, Nakamura Y, Grunberg-Manago M, Court DL (1989)Google Scholar
  2. Autoregulation of RNase III operon by mRNA processing. EMBO J. 8:3401–3407Google Scholar
  3. Boynton JE, Gillham NW, Harris EH, Hosler JP, Johnson AM, Jones AR, Randolph- Anderson BL, Robertson D, Klein TM, Shark KB, Sanford JC (1988) Chloroplast trans-formation in Chlamydomonas with high velocity microprojectiles. Science 240: 1534–1538PubMedCrossRefGoogle Scholar
  4. Brawerman G (1987) Determinants of messenger RNA stability. Cell 48:5–6 Cannistraro VJ, Kenneil D (1989) Purification and characterization of ribonuclease M and mRNA degradation in Escherichia coli. Eur. J. Biochem. 181: 363–370Google Scholar
  5. Casey JL, Hentze MW, Koeller DM, Caughman SW, Rouault TA, Klausner RD, Harford JB (1988) Iron-responsive elements: Regulatory RNA sequences that control mRNA levels and translation. Science 240: 924–928Google Scholar
  6. Chen L, Orozco EM Jr. (1988) Recognition of prokaryotic transcription terminators by spinach chloroplast RNA polymerase. Nucl. Acids Res. 16:8411-8431 Choquet Y, Goldschmidt-Clermont M, Girard-Bascou J, Kuck U, Bennoun P, Rochaix J-D (1988) Mutant phenotypes support a trans-splicing mechanism for the expression of the tripartite psaA gene in the C. reinhardtii chloroplast. Cell 52: 903–913Google Scholar
  7. Deng X, Stern DB, Tonkyn JC, Gruissem W (1987) Plastid run-on transcription: Application to determine the transcriptional regulation of spinach plastid genes. J. Biol. Chem. 262:9641– 9648Google Scholar
  8. Deng XW, Gruissem W (1987) Control of plastid gene expression during development: the limited role of transcriptional regulation. Cell 49: 379–387PubMedCrossRefGoogle Scholar
  9. Donovan WP, Kushner SR (1986) Polynucleotide Phosphorylase and ribonuclease II are required for cell viability and mRNA turnover in Escherichia coli K-12. Proc. Natl. Acad. Sei. USA 83: 120–124Google Scholar
  10. Gruissem W (1989a) Chloroplast gene expression: How plants turn their plastids on. Cell 56: 161–170PubMedCrossRefGoogle Scholar
  11. Gruissem W (1989b) Chloroplast RNA: Transcription and processing. In: A. Marcus (ed) The Biochemistry of Plants: A Comprehensive Treatise, vol. 15. Academic Press, New York, p 151–191Google Scholar
  12. Gruissem W, Barkan A, Deng X, Stern DB (1988) Transcriptional and post-transcriptional control of plastid mRNA levels in higher plants. Trends Genet. 4: 258–263PubMedCrossRefGoogle Scholar
  13. Haley J, Bogorad L (1990) Alternative promoters are used for genes within maize chloroplast polycistronic transcription units. The Plant Cell 2: 323–333PubMedCrossRefGoogle Scholar
  14. Kindle KL (1990) High-frequency nuclear transformation of Chlamydomonas reinhardtii. Proc. Natl. Acad. Sei. USA 87: 1228–1232CrossRefGoogle Scholar
  15. King TC, Sirdeskmukh R, Schlessinger D (1986) Nucleolytic processing of ribonucleic acid transcripts in procaryotes. Microbiol. Rev. 50: 428–451Google Scholar
  16. Klein RR, Mason H, Mullett JE (1988) Light-regulated translation of chloroplast proteins. I. Transcripts of psaA-psaB,psbA, and rbcL are associated with polysomes in dark-grown and illuminated barley seedlings. J. Cell. Biol. 106: 289–301Google Scholar
  17. Kobayashi H, Ngernprasirtsiri J, Akazawa T (1990) Transcriptional regulation and DNA meth- ylation in plastids during transitional conversion of chloroplasts to chromoplasts. EMBO J. 9: 307–313PubMedGoogle Scholar
  18. Kuchka MR, Goldschmidt-Clermont M, van Dillewijn J, Rochaix J-D (1989) Mutation at the Chlamydomonas nuclear NAC2 locus specifically affects stability of the chloroplast psbD transcript encoding polypeptide D2 of PSII. Cell 58: 869–876PubMedCrossRefGoogle Scholar
  19. Lam E, Chua NH (1987) Chloroplast DNA gyrase and in vitro regulation of transcription by template topology and novobiocin. Plant Mol. Biol. 8: 415–424Google Scholar
  20. Mowry KL, Steitz JA (1987) Both conserved signals on mammalian histone pre-mRNAs associate with small nuclear ribonucleoproteins duing 3’ end formation in vitro. Molec. Cell. Biol. 7: 1663–1672Google Scholar
  21. Mullet JE (1988) Chloroplast development and gene expression. Annu. Rev. Plant Physiol. Plant Molec. Biol. 39: 475–502CrossRefGoogle Scholar
  22. Mullet JE, Klein RR (1987) Transcription and RNA stability are important determinants of higher plant chloroplast RNA levels. EMBO J. 6: 1571–1579PubMedGoogle Scholar
  23. Neuhaus H, Scholz A, Link G (1989) Structure and expression of a split chloroplast gene from mustard (Sinapis alba): ribosomal protein gene rps 6 reveals unusual transcriptional features and complex RNA maturation. Curr. Genet. 15: 63–70Google Scholar
  24. Ngernprasirtsiri J, Kobayashi H, Akazawa T (1988) DNA methylation as a mechanism of transcriptional regulation in nonphotosynthetic plastids in plant cells. Proc. Natl. Acad. Sei. USA 85: 4750–4754Google Scholar
  25. Nickelsen J, Link G (1989) Interaction of a 3’ RNA region of the mustard trnK gene with chloroplast proteins. Nucl. Acids Res. 17: 9637–9648Google Scholar
  26. Nilsson G, Lundberg U, von Gabain A (1988) In vivo and in vitro identity of site specific cleavages in the 5’ non-coding region of ompA and bla mRNA in Escherichia coli. EMBO J. 7: 2269–2275PubMedGoogle Scholar
  27. Rochaix J-D, Kuchka M, Mayfield S, Schirmer-Rahire M, Girard-Bascou J, Bennoun P (1989) Nuclear and chloroplast mutations affect the synthesis or stability of the chloroplast psbC gene product in Chlamydomonas reinhardtii. EMBO J. 8: 1013–1021PubMedGoogle Scholar
  28. Ruf M, Kossel H (1988) Structure and expression of the gene coding for the a-subunit of DNA- dependent RNA polymerase from the chloroplast genome of Zea mays. Nucl. Acids Res. 16: 5741–5754Google Scholar
  29. Sijben-Muller G, Hallick RB, Alt J, Westhoff P, Herrmann RG (1986) Spinach plastid genes coding for initiation factor IF-1, ribosomal protein Sil and RNA polymerase a-subunit. Nucl. Acids Res. 14: 1029–1045Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • David B. Stern
    • 1
  • Chen Hsu-Ching
    • 1
  • Cynthia C. Adams
    • 1
  • Karen L. Kindle
    • 1
    • 2
  1. 1.Boyce Thompson Institute for Plant ResearchCornell UniversityIthacaUSA
  2. 2.Cornell-NSF Plant Science Center, Biotechnology BuildingCornell UniversityIthacaUSA

Personalised recommendations