Advertisement

Effects of the 5′-Leader Sequence of Tobacco Mosaic Virus RNA, or Derivatives Thereof, on Foreign mRNA and Native Viral Gene Expression

  • T. Michael
  • A. Wilson
  • Keith Saunders
  • Mandy J. Dowson-Day
  • David E. Sleat
  • Hans Trachsel
  • Karl W. Mundry
Conference paper
Part of the NATO ASI Series book series (volume 49)

Abstract

The primary function of a viral genome is to replicate to produce progeny virions. To achieve this, the exquisitely compact genetic information must perform several functions very efficiently and it is not uncommon for one sequence to fulfil several unrelated tasks. One such pleiotropic sequence, the 5′-untranslated leader of tobacco mosaic virus (TMV) RNA, is the main subject of this article.

Keywords

Tobacco Mosaic Virus Leader Sequence Cowpea Chlorotic Mottle Virus Codon Context mRNA Leader 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Altmann M, Blum S, Wilson TMA, Trachsel H, (to be published) The 5’-leader sequence of TMV RNA mediates initiation factor 4E-independent, but not initiation factor 4A-independent translation in yeast extracts. GeneGoogle Scholar
  2. Beachy RN, Zaitlin M, Bruening G, Israel HW, (1976) A genetic map for the cowpea strain of TMV. Virology 73: 498–507PubMedCrossRefGoogle Scholar
  3. Beck DL, Knorr DA, Dawson WO, (1986) Sequence variations among cDNA clones of TMV ( Abstract ). J Cellular Biochem 10D: 281Google Scholar
  4. Bevan MW, Mason SE, Goelet P, (1985) Expression of tobacco mosaic virus coat protein by a cauliflower mosaic virus promoter in plants. Embo J 4: 1921–1926PubMedGoogle Scholar
  5. Dasso MC, Jackson RJ, (1989) On the fidelity of mRNA translation in the nuclease-treated rabbit reticulocyte lysate system. Nucleic Acids Res 17: 3129–3144PubMedCrossRefGoogle Scholar
  6. Dunigan DD, Zaitlin M, (to be published) Capping of tobacco mosaic virus RNA: analysis of viral-coded guanylyltransferase-like activity. J Biol ChemGoogle Scholar
  7. Filipowicz W, Haenni A-L, (1979) Binding of ribosomes to 5’-terminal leader sequences of eukaryotic messenger RNAs. Proc Natl Acad Sci USA 76:3111– 3115Google Scholar
  8. Garfin DE, Mandeles S, (1975) Sequences of oligonucleotides prepared from tobacco mosaic virus ribonucleic acid. Virology 64: 388–399PubMedCrossRefGoogle Scholar
  9. Gallie DR, Sleat DE, Watts JW, Turner PC, Wilson TMA, (1987a) The 5’-leader sequence of tobacco mosaic virus RNA enhances expression of foreign gene transcripts in vitro and in vivo. Nucleic Acids Res 15: 3257–3273PubMedCrossRefGoogle Scholar
  10. Gallie DR, Sleat DE, Watts JW, Turner PC, Wilson TMA, (1987b) A comparison of eukaryotic viral 5’-leader sequences as enhancers of mRNA expression in vivo. Nucleic Acids Res 15: 8693–8711PubMedCrossRefGoogle Scholar
  11. Gallie DR, Sleat DE, Watts JW, Turner PC, Wilson TMA, (1988a) Mutational analysis of the tobacco mosaic virus 5’-leader for altered ability to enhance translation. Nucleic Acids Res 16: 883–893PubMedCrossRefGoogle Scholar
  12. Gallie DR, Walbot V, Hershey JWB, (1988b) The ribosomal fraction mediates the translational enhancement associated with the 5’-leader of tobacco mosaic virus. Nucleic Acids Res 16: 8675–8694PubMedCrossRefGoogle Scholar
  13. Gallie DR, Kado CI, (1989) A translational enhancer derived from tobacco mosaic virus is functionally equivalent to a Shine-Dalgarno sequence. Proc Natl Acad Sci USA 86: 129–132PubMedCrossRefGoogle Scholar
  14. Gallie DR, Lucas WJ, Walbot V, (1989) Visualizing mRNA expression in plant protoplasts: factors influencing efficient mRNA uptake and translation. The Plant Cell 1: 301–311PubMedCrossRefGoogle Scholar
  15. Goelet P, Lomonossoff GP, Butler PJG, Akam ME, Gait MJ, Karn J, (1982) Nucleotide sequence of tobacco mosaic virus RNA. Proc Natl Acad Sci USA 79: 5818–5822PubMedCrossRefGoogle Scholar
  16. Herson D, Schmidt A, Seal S, Marcus A, van Vloten-Doting L, (1979) Competitive mRNA translation in an in vitro system from wheat germ. J Biol Chem 254: 8245– 8249Google Scholar
  17. Hills GJ, Plaskitt KA, Young ND, Dunigan DD, Watts JW, Wilson TMA, Zaitlin M, (1987) Immunogold localization of the intracellular sites of structural and nonstructural tobacco mosaic virus proteins. Virology 161: 488–496PubMedCrossRefGoogle Scholar
  18. Hunter TR, Hunt T, Knowland J, Zimmern D, (1976) Messenger RNA for the coat protein of tobacco mosaic virus. Nature (Lond) 260: 759–764CrossRefGoogle Scholar
  19. Iwanowski D, (1903) Uber die Mosaikkrankheit der Tabakspflanzen. Pflanzenkr. 13: 1–41Google Scholar
  20. Jaeger JA, Turner DH, Zuker M, (1989) Improved predictions of secondary structures for RNA. Proc Natl Acad Sci USA 86: 7706–7710PubMedCrossRefGoogle Scholar
  21. Jefferson RA, (1987) Assaying chimeric genes in plants: the GUS gene fusion system. Plant Mol Biol Reporter 5: 387–405CrossRefGoogle Scholar
  22. Jobling SA, Gehrke L, (1987) Enhanced translation of chimaeric messenger RNAs containing a plant viral untranslated leader sequence. Nature (Lond) 325: 622–625CrossRefGoogle Scholar
  23. Jobling SA, Cuthbert CM, Rogers SG, Fraley RT, Gehrke L, (1988) In vitro transcriptional and translational efficiency of chimeric SP6 messenger RNAs devoid of 5’-vector nucleotides. Nucleic Acids Res 16:4483–4498Google Scholar
  24. Konarska M, Filipowicz W, Domdey H, Gross HJ, (1981) Binding of ribosomes to linear and circular forms of the 5’-terminal leader fragment of tobacco-mosaicvirus RNA. Eur J Biochem 114: 221–227PubMedCrossRefGoogle Scholar
  25. Kozak M, (1989) The scanning model for translation: an update. J Cell Biol 108: 229–241PubMedCrossRefGoogle Scholar
  26. Kukla BA, Guilley HA, Jonard GX, Richards KE, Mundry K-W, (1979)Google Scholar
  27. Characterization of long guanosine-free RNA sequences from the Dahlemense and U2 strains of tobacco mosaic virus. Eur J Biochem 98:61–66Google Scholar
  28. Lehto K, Dawson WO, (1990) Changing the start codon context of the 30K gene of tobacco mosaic virus from “weak” to “strong” does not increase expression. Virology 174: 169–176PubMedCrossRefGoogle Scholar
  29. Lehto K, Grantham GL, Dawson WO, (1990) Insertion of sequences containing the coat protein subgenomic RNA promoter and leader in front of the tobacco mosaic virus 30K ORF delays its expression and causes defective cell-to-cell movement. Virology 174: 145–157PubMedCrossRefGoogle Scholar
  30. Ludwig SR, Bowen B, Beach L, Wessler SR, (1990) A regulatory gene as a novel visible marker for maize transformation. Science 247: 449–450PubMedCrossRefGoogle Scholar
  31. Mandeles S, (1968) Location of unique sequences in tobacco mosaic virus ribonucleic acid. J Biol Chem 243: 3671–3674PubMedGoogle Scholar
  32. Meshi T, Ishikawa M, Takamatsu N, Ohno T, Okada Y, (1983) The 5’-terminal sequence of TMV RNA. Question on he polymorphism found in vulgare strain. FEBS Lett 162: 282–285PubMedCrossRefGoogle Scholar
  33. Mi S, Durbin R, Huang HV, Rice CM, Stollar V, (1989) Association of the Sindbis virus RNA methyltransferase activity with the nonstructural protein nsP1. Virology 170: 385–391PubMedCrossRefGoogle Scholar
  34. Mundry K-W, (1965) A model of the coat protein cistron of tobacco mosaic virus and its biochemical investigation: the model, the experimental approach, and the isolation of a long oligonucleotide from TMV-RNA. Z Vererbungsl 97: 281–296PubMedCrossRefGoogle Scholar
  35. Mundry K-W, Priess H, (1971) Structural elements of viral ribonucleic acid and their variation II 32P-oligonucleotide maps of large G-lacking segments of RNA of tobacco mosaic virus wild strains. Virology 46: 86–97PubMedCrossRefGoogle Scholar
  36. Mundry K-W, Watkins PAC, Ashfield T, Fernandez A-G, Plaskitt KA, Eisele-Walter S, Wilson TMA, (to be published) Complete uncoating of the 5’-leader sequence of tobacco mosaic virus RNA occurs rapidly and is required to initiate cotranslational virus disassembly in vitro. J Gen VirolGoogle Scholar
  37. Namba K, Pattanayek R, Stubbs G, (1989) Visualization of protein-nucleic acid interactions in a virus: refined structure of intact tobacco mosaic virus at 2.9Å resolution by X-ray fiber diffraction. J Mol Biol 208: 307–325PubMedCrossRefGoogle Scholar
  38. Ohno T, Aoyagi M, Yamanashi Y, Saito H, Ikawa S, Meshi T, Okada Y, (1984) Nucleotide sequence of the tobacco mosaic virus (tomato strain) genome and comparison with the common strain genome. J Biochem 96: 1915–1923PubMedGoogle Scholar
  39. Olins PO, Devine CS, Rangwala, SH, Kavka KS, (1988) The T7 phage gene 10 leader RNA, a ribosome-binding site that dramatically enhances the expression of foreign genes in Escherichia coli. Gene 73: 227–235PubMedCrossRefGoogle Scholar
  40. Parks GD, Duke GM, Palmenberg AC, (1986) Encephalomyocarditis virus 3C protease: efficient cell-free expression from clones which link viral 5’ noncoding sequences to the P3 region. J Virol 60: 376–384PubMedGoogle Scholar
  41. Pelham HRB, (1978) Leaky UAG termination codon in tobacco mosaic virus RNA. Nature (Lond) 272: 469–471CrossRefGoogle Scholar
  42. Richards K, Guilley H, Jonard G, Keith G, (1977) Leader sequence of 71 nucleotides devoid of G in tobacco mosaic virus RNA. Nature (Lond) 267: 548–550CrossRefGoogle Scholar
  43. Richards K, Guilley H, Jonard G, Hirth L, (1978) Nucleotide sequence at the 5’extremity of tobacco-mosaic-virus RNA 1. The noncoding region (nucleotides 1–68). Eur J Biochem 84: 513–519PubMedCrossRefGoogle Scholar
  44. Roenhorst JW, Verduin BJM, Goldbach RW, (1989) Virus-ribosome complexes from cell-free translation systems supplemented with cowpea chlorotic mottle virus particles. Virology 168: 138–146PubMedCrossRefGoogle Scholar
  45. Saito T, Hosakawa D, Meshi T, Okada Y, (1987) Immunocytochemical localization of the 130k and 180k (putative replicase components) of tobacco mosaic virus. Virology 160: 477–481PubMedCrossRefGoogle Scholar
  46. Saunders K, Wilson TMA, (to be published) Functional analysis of synthetic mRNA leaders derived from the 5’-noncoding sequence of TMV RNA. Nucleic Acids ResGoogle Scholar
  47. Scheidel LM, Durbin RK, Stollar V, (1989) SVLM21, a Sindbis virus mutant resistant to methionine deprivation, encodes an altered methyltransferase. Virology 173: 408–414PubMedCrossRefGoogle Scholar
  48. Shaw JG, Piaskitt KA, Wilson TMA, (1986) Evidence that tobacco mosaic virus particles disassemble cotranslationally in vivo. Virology 148: 326–336PubMedCrossRefGoogle Scholar
  49. Shine J, Dalgarno L (1974) The 3’-terminal sequence of Escherichia coli 16S ribosomal RNA: complementarity to nonsense triplets and ribosome binding sites. Proc Natl Acad Sci USA 71: 1342–1346PubMedCrossRefGoogle Scholar
  50. Sleat DE, Gallie DR, Jefferson RA, Bevan MW, Turner PC, Wilson TMA, (1987) Characterisation of the 5’-leader sequence of tobacco mosaic virus RNA as a general enhancer of translation in vitro. Gene 60: 217–225PubMedCrossRefGoogle Scholar
  51. Sleat DE, Hull R, Turner PC, Wilson TMA, (1988) Studies on the mechanism of translational enhancement by the 5’-leader sequence of tobacco mosaic virus RNA. Eur J Biochem 175: 75–86PubMedCrossRefGoogle Scholar
  52. Turner DR, Joyce LE, Butler PJG, (1988) The tobacco mosaic virus assembly origin RNA. Functional characteristics defined by directed mutagenesis. J Mol Biol 203: 5312–547CrossRefGoogle Scholar
  53. Tyc K, Konarska M, Gross HJ, Filipowicz W, (1984) Multiple ribosome binding to the 5’-terminal leader sequence of tobacco mosaic virus RNA. Assembly of an 80S ribosome-mRNA complex at the AUU codon. Eur J Biochem 140: 503–511PubMedCrossRefGoogle Scholar
  54. Wijdeveld MMG, Goldbach RW, Verduin BJM, van Loon LC, (1989) Association of viral 126-kDa protein in X-bodies with nuclei in mosaic-diseased tobacco leaves. Arch Virol 104: 225–239PubMedCrossRefGoogle Scholar
  55. Wilson TMA, (1984) Cotranslational disassembly of tobacco mosaic virus in vitro. Virology 137: 255–265PubMedCrossRefGoogle Scholar
  56. Wilson TMA, (1986) Expression of the large 5’-proximal cistron of tobacco mosaic virus by 70S ribosomes during cotranslational disassembly in a prokaryotic cell- free system. Virology 152: 277–279PubMedCrossRefGoogle Scholar
  57. Wilson TMA, (1988) Structural interactions between plant RNA viruses and cells. In: Miflin BJ, (ed) Oxford Surveys of Plant Molecular and Cell Biology. Oxford University Press, Oxford, 5: 89–144Google Scholar
  58. Wilson TMA, Shaw JG, (1985) Does TMV uncoat cotranslationally in vivo? Trends in Biochem Sci 10: 57–60CrossRefGoogle Scholar
  59. Wilson TMA, Watkins PAC, (1985) Cotranslational disassembly of a cowpea strain (Cc) of TMV: evidence that viral RNA-protein interactions at the assembly origin block ribosome translocation in vitro. Virology 145: 346–349PubMedCrossRefGoogle Scholar
  60. Wu A-Z, Dai R-M, Shen X-R, Sun Y-K, (1984) The location and function of the 5’-cap structure of TMV-RNA in the virion. Acta Biochim et Biophys Sinica 16: 501–507Google Scholar
  61. Yamaya J, Yoshioka M, Meshi T, Okada Y, Ohno T, (1988) Expression of tobacco mosaic virus RNA in transgenic plants. Mol Gen Genet 211: 520–525PubMedCrossRefGoogle Scholar
  62. Zuker M, Stiegler P, (1981) Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information. Nucleic Acids Res 9: 133–148PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • T. Michael
    • 1
  • A. Wilson
    • 1
  • Keith Saunders
    • 1
    • 2
  • Mandy J. Dowson-Day
    • 1
    • 3
  • David E. Sleat
    • 1
    • 4
  • Hans Trachsel
    • 1
    • 5
  • Karl W. Mundry
    • 1
    • 6
  1. 1.Center for Agricultural Molecular BiologyRutgers UniversityNew BrunswickUSA
  2. 2.Department of Virus ResearchJohn Innes Institute, AFRC IPSRNorwichUK
  3. 3.Nitrogen Fixation Laboratory, AFRC IPSRSussex UniversityBrightonUK
  4. 4.Department of Plant PathologyCornell UniversityIthacaUSA
  5. 5.Institut fur Biochemie und MolekularbiologieUniversität BernBernSwitzerland
  6. 6.Biologisches InstitutUniversität StuttgartStuttgart 80Germany

Personalised recommendations