Skip to main content

Culture Conditions Affect Differently the Translation of Individual Escherichia Coli mRNAs

  • Conference paper
Book cover Post-Transcriptional Control of Gene Expression

Part of the book series: NATO ASI Series ((ASIH,volume 49))

  • 147 Accesses

Abstract

Individual bacterial mRNAs are translated at very different rates (Ray and Pearson, 1975; McCarthy, et al., 1985). Extensive work during the last decade has revealed that these unequal performances largely stem from sequence differences in the region contacted by the ribosome during initiation (Ribosome Binding Site or RBS: see Steitz, 1969). Thus, the nature of the initiation codon, the length of the Shine-Dalgarno sequence (SD), and the spacing between them, all contribute to the translational efficiency (Gold, 1988). Additional RBS sequence elements, less characterized to date, are probably also important (McCarthy et al., 1985; Petersen et al., 1988). Finally, the extent of secondary structure around RBSs profoundly affects their efficiencies (Gold, 1988; de Smit and van Duin, 1990). However, the role of these different elements has not been investigated as a function of growth conditions. The concentration of ribosomes, factors, precursors, etc, vary according to the metabolic state of the cell (Bremer and Dennis, 1987), and in vivo such changes affect differently the translational yields from individual mRNAs (Gualerzi et al., 1988). Should this also occur in vivo, then the translational yields from individual mRNAs would be expected to change according to growth conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adhya S and Gottesman M, (1978) Control of transcription termination, Ann. Rev. Biochem. 47: 967–996

    Article  PubMed  CAS  Google Scholar 

  • Bingham A., Fulford F, Murray P., Dreyfus M., and Busby S, (1988) Translation initiation in the Escherichia Coli galE gene, in Genetics of Translation, Tuite H.F., Picard M., and Bolotin-Fukuhara M., Eds, Springer-Verlag, Berlin, pp 307–316

    Google Scholar 

  • Bremer H and Dennis PP, (1987) Modulation of the chemical composition and other parameters of the cell by growth rate, in Escherichia Coli and Salmonella Typhimurium: Cellular and molecular biology, FC Neidhardt, et al. eds., ASM, Washington DC, pp 1527–1542

    Google Scholar 

  • Busby S and Dreyfus M, (1983) Segment-specific mutagenesis of the regulatory region of the galactose operon, Gene 21: 123–133

    Article  Google Scholar 

  • Cashel M and Rudd KE, (1987) The stringent response, in Escherichia Coli and Salmonella Typhimurium: Cellular and molecular biology, F.C. Neidhardt, et al. eds, ASM, Washington DC, pp 1410–1438

    Google Scholar 

  • Dreyfus M, (1988) What constitute the signal for the initiation of protein synthesis on E. Coli mRNAs ? J. Mol. Biol. 204: 79–94

    Google Scholar 

  • Gold L, (1988) Posttranscriptionnal regulation mechanisms in E. coli, Ann. Rev. Biochem. 57: 199–233

    Article  PubMed  CAS  Google Scholar 

  • Gualerzi CO, Calogero RA, Canonaco RA, Brombach M and Pon CL, (1988) Selection of mRNA by ribosomes during procaryotic translational initiation, in Genetics of Translation, Tuite H.F., Picard M., and Bolotin-Fukuhara M,. Eds, Springer-Verlag, Berlin, pp 317–330

    Google Scholar 

  • Hall MN, Gabay J, Débarbouillé M and Schwartz M, (1982) A role for mRNA secondary structure in the control of translation initiation, Nature 295: 616–618

    Article  PubMed  CAS  Google Scholar 

  • Jaurin B, Grundstrôm T, Edlund T, and Normark S, (1981) The E. coli 6-lactamase attenuator mediates growth rate-dependent regulation, Nature 290: 221–225

    Article  PubMed  CAS  Google Scholar 

  • Jones WR, Barcak GJ, and Wolf RE, (1990) Altered growth-rate dependent regulation of 6-Phosphogluconate deshydrogenase (…), J. Bact 172: 1197–1205

    PubMed  CAS  Google Scholar 

  • Kenneil DE, (1986) The instability of mRNAs in bacteria, in Maximizing gene expression,W. Reznikoff and L. Gold Eds., Butterworth, USA, pp 101–142

    Google Scholar 

  • Lindahl L, Archer RH, McCormick JR, Freedman LP and Zengel JM, (1989) Translational coupling of the two proximal genes in the S10 ribosomal protein operon, J. Bact. 171: 2639–2645

    PubMed  CAS  Google Scholar 

  • Lovett PS, (1990) Translational attenuation as the regulator of inducible cat genes, J. Bact 172: 1–6

    PubMed  CAS  Google Scholar 

  • McCarthy JEG, Schairer HU and Sebald W, (1985) Translational initiation frequency of atp genes from E. coli: identification of an intercistronic sequence that enhances translation, EMBO J., 4: 519–526

    PubMed  CAS  Google Scholar 

  • Nomura M, Bedwell DM, Yamagishi M, Cole JR and Kolb JM, (1987) RNA polymerase and regulation of RNA synthesis in E. coli: RNA polymerase concentration, stringent control, and ribosome feedback regulation, in RNA polymerase and the regulation of transcription W. Reznikoff, et al. eds. Elsevier pp 137–149

    Google Scholar 

  • Petersen GB, Stockwell PA, and Hill DF, (1988) mRNA recognition in E. coli: a possible second site of interaction with 16S ribosomal RNA, EMBO J., 7:3957– 3962

    Google Scholar 

  • Raibaud O, Mock M, and Schwartz M, (1984) A technique for integrating any DNA fragment into the chromosome of E. coli, Gene 29: 231–241

    Article  PubMed  Google Scholar 

  • Ray PN and Pearson ML, (1975) Functional inactivation of bacteriophage λ morphogenetic gene mRNA, Nature 253: 647–650

    Article  PubMed  CAS  Google Scholar 

  • de Smit MH and van Duin J, (1990) Control of procaryotic translational initiation by mRNA secondary structure, Prog. Nucl. Acid Res. and Mol. Biol. 38: in press

    Google Scholar 

  • Steitz JA, (1969) Polypeptide chain initiation: nucleotide sequences of the three ribosome binding sites in Bacteriophage R17 RNA, Nature 224: 957–964

    Article  PubMed  CAS  Google Scholar 

  • Studier FW and Moffat BA, (1986) Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes, J. Mol. Biol. 189: 113–130

    Article  PubMed  CAS  Google Scholar 

  • Ulmann A, Joseph E, and Danchin A, (1979) Cyclic AMP as a modulator of polarity in polycistronic transcriptional units, Proc. Natl. Acad. Sci. USA 76: 3194–3197

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jacques, N., Chevrier-Miller, M., Guillerez, J., Dreyfus, M. (1990). Culture Conditions Affect Differently the Translation of Individual Escherichia Coli mRNAs. In: McCarthy, J.E.G., Tuite, M.F. (eds) Post-Transcriptional Control of Gene Expression. NATO ASI Series, vol 49. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-75139-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-75139-4_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-75141-7

  • Online ISBN: 978-3-642-75139-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics