Skip to main content

Development of a Single Cell Ca2+ Imaging System to Study the Role of PKC Substrate B-50 in Neurotransmitter Release and Neurite Outgrowth

  • Conference paper
Biological Signal Transduction

Part of the book series: NATO ASI Series ((ASIH,volume 52))

  • 95 Accesses

Abstract

One of the well-characterized substrates of protein kinase C (PKC) in neurons is the protein B-50. B-50 is a nervous tissue-specific substrate of PKC associated with the cytosolic face of the presynaptic membrane (see De Graan et al., 1991). Protein B-50 is identical to the growth-associated protein GAP-43, the calmodulin (CaM)-binding protein neuromodulin, and protein F1, which is implicated in long-term potentiation (for a review see Skene, 1989). B-50 is one of the abundant proteins in the neuronal growth cone (Skene, 1989) and has been implicated in signal transduction and the mechanism of neurite outgrowth during development and differentiation (Skene, 1989). In a series of studies we have shown that the degree of PKC-mediated phosphorylation of B-50 in hippocampal slices and synaptosomes is correlated with transmitter release (Dekker et al., 1991a; Heemskerk et al., 1989,1990). Based on these correlative studies and the fact that phorbol esters which stimulate PKC enhance neurotransmitter release (see Dekker et al., 1991a), we have suggested that PKC-mediated B-50 phosphorylation may be involved in the regulation of neurotransmitter release.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Almers W, Neher E (1985) The calcium signal from fura-2 loaded mast cells depends strongly on the method of dye-loading. FEBS Lett 192: 13–18.

    Article  PubMed  CAS  Google Scholar 

  • Becker PL, Fay FS (1987) Photobleaching of fura-2 and its effect on determination of calcium concentrations. Am J Physiol 253: C613–C618.

    PubMed  CAS  Google Scholar 

  • Cheek TR, O’Sullivan AJ, Moreton RB, Berridge MJ, Burgoyne RD (1989) Spatial localization of the stimulus-induced rise in cytosolic Ca2+ in bovine adrenal chromaffin cells. Distinct nicotinic and muscarinic patterns. FEBS Lett 247: 429–434.

    Article  PubMed  CAS  Google Scholar 

  • Connor JA (1986) Digital imaging of free calcium changes and of spatial gradients in growing processes in single, mammalian central nervous system cells. Proc Natl Acad Sci USA 83: 6179–6183.

    Article  PubMed  CAS  Google Scholar 

  • Connor JA, Cornwall MC, Williams GH (1987) Spatially resolved cytosolic calcium response to angiotensin II and potassium in rat glomerulosa cells measured by digital imaging techniques. J Biol Chem 262: 2919–2927.

    PubMed  CAS  Google Scholar 

  • De Graan PNE, Oestreicher AB, De Wit M, Kroef M, Schrama LH, Gispen WH (1990) Evidence for the binding of calmodulin to endogenous B-50 (GAP-43) in native synaptosomal plasma membranes. J Neurochem 55: in press.

    Google Scholar 

  • De Graan PNE, Schrama LH, Oestreicher AB, Schotman P, Gispen WH (1991) Protein kinase C substrate B-50 (GAP-43) and neurotransmitter release. Progr Brain Res, in press.

    Google Scholar 

  • Dekker LV, De Graan PNE, Oestreicher AB, Versteeg DHG, Gispen WH (1989) Inhibition of noradrenaline release by antibodies to B-50 (GAP-43). Nature 342: 74–76.

    Article  PubMed  CAS  Google Scholar 

  • Dekker LV, De Graan PNE, Gispen WH (1991a) Transmitter release: target of regulation by protein kinase C? Progr Brain Res, in press.

    Google Scholar 

  • Dekker LV, De Graan PNE, Pijnappel P, Oestreicher AB, Gispen WH (1991b) Nor-adrenaline release from streptolysin-O-permeated rat cortical synaptosomes. J Neurochem, in press.

    Google Scholar 

  • Grynkiewicz G, Poenie M, Tsien RY (1985) A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem 260: 3440–3450.

    PubMed  CAS  Google Scholar 

  • Heemskerk FMJ, Schrama LH, Gianotti C, Spierenburg H, Versteeg DHG, De Graan PNE, Gispen WH (1989a) 4-Aminopyridine stimulates B-50/GAP-43 phosphorylation and [3H]-noradrenaline release in rat hippocampal slices. J Neurochem 54: 863–869.

    Article  Google Scholar 

  • Heemskerk FMJ, Schrama LH, De Graan PNE, Gispen WH (1990) 4-Aminopyridine stimulates B-50 (GAP-43) phosphorylation in rat synaptosomes. J Mol Neurosci 2: 11–17.

    Article  PubMed  CAS  Google Scholar 

  • Heemskerk FMJ, Schrama LH, Ghijsen WEHM, De Graan PNE, Lopes da Silva FH, Gis-pen WH (1991) Presynaptic mechanism of action of 4-aminopyridine: changes in [Ca2+]i and its relationship to B-50 (GAP-43) phosphorylation. J Neurochem, in press.

    Google Scholar 

  • Inoue S (1987) Video Microscopy. Plenum Press, NY.

    Google Scholar 

  • Liu Y, Storm DR (1990) Regulation of free calmodulin levels by neuromodulin: neuron growth and regeneration. Trends Pharmacol Sci 11: 107–111.

    Article  PubMed  CAS  Google Scholar 

  • Nichols RA, Sihra TS, Czernik AJ, Nairn A, Greengard P. (1990) Calcium/calmo-dulin-dependent protein kinase II increases glutamate and noradrenaline release from synaptosomes. Nature 343: 647–651.

    Article  PubMed  CAS  Google Scholar 

  • Schmidt D, Papadopoulos MT, Crooke ST, Stassen FL (1988) Potential role of protein kinase C in the regulation of vasopressin (V1) receptors of vascular smooth muscle cells (A10) Faseb J 2: A624.

    Google Scholar 

  • Skene JHP (1989) Axonal growth-associated proteins. Ann Rev Neurosci 12: 127–156.

    Article  PubMed  CAS  Google Scholar 

  • Tsien RY (1988) Fluoresence measurement and photochemical manipulation of cytosolic free calcium. TINS 11: 419–424.

    PubMed  CAS  Google Scholar 

  • Tsien RY (1989) Fluorescent indicators of ion concentrations. Meth Cell Biol 30: 127–156.

    Article  CAS  Google Scholar 

  • Tsien RY, Poenie M (1986) Fluoresence ratio imaging: a new window into intra-cellular ionic signalling. Trends Biochem Sci 11: 450–455.

    Article  CAS  Google Scholar 

  • Verhage M, Besselsen E, Lopes da Silva FH, Ghijsen WEJM (1988) Evaluation of the Ca2+ concentration in purified nerve tenninals: relationship between Ca2+ homeostasis and synaptosomal preparation. J Neurochem 51: 1667–1674.

    Article  PubMed  CAS  Google Scholar 

  • Williams DA, Fogarty KE, Tsien RY, Fay FS (1985) Calcium gradients in single smooth muscle cells revealed by the digital inmaging microscope using fura-2. Nature 318: 558–561.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Elands, J., Gispen, W.H., W.H., De Graan, P.N.E. (1991). Development of a Single Cell Ca2+ Imaging System to Study the Role of PKC Substrate B-50 in Neurotransmitter Release and Neurite Outgrowth. In: Ross, E.M., Wirtz, K.W.A. (eds) Biological Signal Transduction. NATO ASI Series, vol 52. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-75136-3_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-75136-3_32

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-75138-7

  • Online ISBN: 978-3-642-75136-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics