Control of Cellular Activity by Protein Phosphorylation-Dephosphorylation: Phosphorylase Kinase from Bovine Stomach Smooth Muscle

  • T. G. Sotiroudis
  • V. G. Zevgolis
  • A. E. Evangelopoulos
Conference paper
Part of the NATO ASI Series book series (volume 52)

Abstract

Protein phosphorylation process appears to be the most important type of covalent modification involved in cellular functions (Krebs, 1985). Basically, the system involves a minimum of three proteins and two reactions:
$$ Protein\, + \,nNTP\,---\,Protein - Pn\, + \,nNDP $$
(1)
$$ Protein - Pn\, + \,n{{H}_{2}}{\text{O}}\,---\,Protein\, + \,nPi $$
(2)
Reaction (1) is catalyzed by protein kinase(s) and reaction (2) by phosphoprotein phosphatase(s). In general NTP is ATP but several protein kinases are today known in which GTP is almost as effective as ATP (Krebs and Beavo, 1979).

Keywords

Carbohydrate Tyrosine Adenosine MgCl Serine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ballou LM, Fischer EH (1986) Phosphoprotein phosphatases. In: Boyer PD, Krebs EG (eds) The Enzymes vol 17, Academic Press, New York, p.43.Google Scholar
  2. Bender PK, Emerson CP Jr (1987) Skeletal muscle Phosphorylase kinase catalytic subunit mRNAs are expressed in heart tissue but not in liver. J Biol Chem, 262:8799–8805PubMedGoogle Scholar
  3. Carlson GM, Bechtel PJ, Graves DJ (1979) Chemical and regulatory properties of phosphorylase kinase and cyclic AMP-dependent protein kinase. Adv Enzymol 50:41–115PubMedGoogle Scholar
  4. Chan KFJ, Graves DJ (1984) Molecular properties of phosphorylase kinase. In: Cheung Y (ed) Calcium and cell function vol 5 Academic Press, New York, p1Google Scholar
  5. Cohen P, Burshell A, Foulkes JG, Cohen PTW, Vanaman TC, Nairn AC (1978) Identification of the Ca2+-depoendent modulator protein as the fourth subunit of rabbit skeletal muscle phosphorylase kinase. FEBS Lett 92:287–293PubMedCrossRefGoogle Scholar
  6. Cohen P (1989) The structure and regulation of protein phosphatases. Annu Rev Biochem 58:453–508PubMedCrossRefGoogle Scholar
  7. Cohen P, Holmes CFB, Tsukitani Y (1990) Okadaic acid: a new probe for study of cellular regulation. Tr Biochem Sci 15:98–102CrossRefGoogle Scholar
  8. Cohen PTW, Le Marchand Brustel Y, Cohen P (1981) Regulation of glycogen phosphorylase and glycogen synthase by adrenalin in soleus muscle of phosphorylase kinase-deficient mice. Eur J Biochem 115:619–625PubMedCrossRefGoogle Scholar
  9. Cooper JA, Pollard TD (1982) Methods to measure actin polymerization. Methods Enzymol 85:182–210PubMedCrossRefGoogle Scholar
  10. da Cruz EF, Cohen PTW (1987) Isolation and sequence analysis of a cDNA clone encoding the entire catalytic subunit of phosphorylase kinase. FEBS Lett, 220:36–42CrossRefGoogle Scholar
  11. Fischer eH, Alaba JO, Brautigan DL, Kerrick WGL, Malencik DA, Moeschler HJ, Picton C, Pocinwong S (1978) Evolutionary aspects of the structure and regulation of phosphorylase kinase. In: Li CH (ed) Versatility of proteins, Academic Press, New York, p133Google Scholar
  12. Graves DJ, Carlson GM, Skuster JR, Parrish RF, Carty TJ, Tessmer GW (1975) Pyridoxal phosphate-dependent conformational states of glycogen phosphorylase as probed by interconverting enzymes. J Biol Chem 250: 2254–2258PubMedGoogle Scholar
  13. Grazi E, Magri E, Pasquali-Ronchetti I (1982) Multiple supramolecular structures formed by interaction of actin with protamine. Biochem J 205:31–37PubMedGoogle Scholar
  14. Hunter T, Cooper JA (1985) Protein-tyrosine kinases. Annu Rev Biochem 54:897–930PubMedCrossRefGoogle Scholar
  15. Hunter T (1989) Protein-tyrosine phosphatases: the other side of the coin. Cell 58:1013–1016PubMedCrossRefGoogle Scholar
  16. Kamm KE, Stull JT (1989) Regulation of smooth muscle contractile elements by second messengers. Ann Rev Physiol 51:299–313CrossRefGoogle Scholar
  17. Kay J, Siemankowski LM, Siemankowski RF, Greweling JA, Goll DE (1982) Degradation of myofibrillar proteins by trypsin-like serine proteinases. Biochem J 201:279–285PubMedGoogle Scholar
  18. Krebs EG, Beavo JA (1979) Phosphorylation-dephosphorylation of enzymes. Annu Rev Biochem 48:923–959PubMedCrossRefGoogle Scholar
  19. Krebs EG (1986) The phosphorylation of proteins:a major mechanism for biological regulation. Biochem Soc Trans 13:813–820Google Scholar
  20. Kilimann MW, Zander NF, Kuhn CC, Crabb JW, Meyer HE, Heilmeyer LMG Jr (1988) The α and β submits of phosphorylase kinase are homologous: cDNA cloning and primary structure of the β subunit. Proc Natl Acad Sci USA, 85:9381–9385PubMedCrossRefGoogle Scholar
  21. LaPorte DC, Stueland CS, Ikeda TP (1989) Icocitrate dehydrogenase kinase/phosphatase. Biochimie 71:1051–1057PubMedCrossRefGoogle Scholar
  22. Mornet D, Ue K (1984) Proteolysis and structure of skeletal muscle actin. Proc Natl Acad Sci USA 81:3680–3684PubMedCrossRefGoogle Scholar
  23. Nikolaropoulos S, Sotiroudis TG (1985) Phosphorylase kinase from chicken gizzard. Partial purification and characterization. Eur J Biochem 151:467–473PubMedCrossRefGoogle Scholar
  24. Paul RJ (1989) Smooth muscle energetics. Ann Rev Physiol 51:331–349CrossRefGoogle Scholar
  25. Pickett-Gies CA, Walsh DA (1986) Phosphorylase kinase. In: Boyer P.D, Krebs EG (eds) The Enzymes vol 17. Academic Press, New York, p395Google Scholar
  26. Pollard TD, Cooper JA (1986) Actin and actin-binding proteins. A critical evaluation of mechanisms and functions. Ann Rev Biochem 55: 987–1035PubMedCrossRefGoogle Scholar
  27. Putnam-Evans C, Harmon AC, Palevitz BA, Fechheimer M, Cormier MJ (1989) Calcium-dependent protein kinase is localized with F-actin in plant cells. Cell Motil Cytosk 12:12–22CrossRefGoogle Scholar
  28. Rasmussen H (1986) The calcium messenger system. N Eng J Med 314:1094–1101 andCrossRefGoogle Scholar
  29. Rasmussen H (1986) The calcium messenger system. N Eng J Med 314: 1164–1170CrossRefGoogle Scholar
  30. Reimann EM, Titani K, Ericsson LH, Wade RD, Fischer EH, Walsh KA (1984) Homology of the y subunit of phosphorylase b kinase with cAMP-dependent protein kinase. Biochemistry 23:4185–4192PubMedCrossRefGoogle Scholar
  31. Reimann EH, Walsh DA, Krebs EG (1971) Purification and properties of rabbit skeletal muscle adenosine 3′,5′-monophosphate-dependent protein kinases. J Biol Chem 246:1986–1995PubMedGoogle Scholar
  32. Schulman H (1988) The multifunctional Ca2+/calmodul in-dependent protein kinae. In: Greengard P, Robinson GA (eds) Advances in second messenger and phosphoprotein research, vol 22. Raven Press, New York, P39Google Scholar
  33. Sibley DR, Benovic JL, Garon MG, Lefkowitz RJ (1987) Regulation of transmembrane signaling by receptor phosphorylation. Cell 48:913–922PubMedCrossRefGoogle Scholar
  34. Skuster JR, Chan KFJ, Graves DJ (1980) Isolation and properties of the catalytically active y subunit of phosphorylase b kinase. J Biol Chem 255:2203–2210PubMedGoogle Scholar
  35. Sotiroudis TG, Nikolaropoulos S, Evangelopoulos AE (1986) Glycogen metabolism in smooth muscle. In: Heilmeyer LMG (ed) Signal transduction and protein phosphorylation, Plenum Press, New York, p243Google Scholar
  36. Tonks NK, Charbonneau H (1989) Protein tyrosine dephosphorylation and signal transduction. Tr Biochem Sci 14:497–500CrossRefGoogle Scholar
  37. Vandekerchove J, Weber K (1979) The complete amino acid sequence of actins from bovine aorta, bovine heart, bovine fast skeletal muscle and rabbit slow skeletal muscle. Differentiation 14:123–133CrossRefGoogle Scholar
  38. Varsanyi M, Groschel-Stewart U, Heilmeyer LMG Jr (1978) Characterization of a Ca2+-dependent protein kinase in skeletal muscle membranes of I-strain and wild-type mice. Eur J Biochem 87:331–340PubMedCrossRefGoogle Scholar
  39. Varsanyi M, Heilmeyer LMG Jr (1979) The protein kinase properties of calsequestrin. FEBS Lett 103:85–88PubMedCrossRefGoogle Scholar
  40. Yarden Y, Ullrich A (1988) Molecular analysis of signal transduction by growth factors. Biochemistry 27:3113–3119PubMedCrossRefGoogle Scholar
  41. Zander NF, Meyer H, Hoffmann-Posorske E, Crabb JW, Heilmeyer LMG Jr, Kilimann MW (1988) cDNA cloning and complete primary structure of skeletal muscle phosphorylase kinase (a subunit). Proc Natl Acad Sci USA 85:2929–2933PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • T. G. Sotiroudis
    • 1
  • V. G. Zevgolis
    • 1
  • A. E. Evangelopoulos
    • 1
  1. 1.Institute of Biological ResearchThe National Hellenic Research FoundationAthensGreece

Personalised recommendations