Skip to main content

Receptor Selectivity and Dimensionality of Odours at the Stage of the Olfactory Receptor Cells

  • Conference paper
Chemosensory Information Processing

Part of the book series: NATO ASI Series ((ASIH,volume 39))

Abstract

Several different approaches have been used to relate physico-chemical properties of odorants to their organoleptic characteristics such as judged by human subjects. Unfortunately, one get several difficulties if one tries a direct mapping of the whole perceptual olfactory space onto the physico-chemical space. The descriptions of odour rest always incomplete; correlations between individuals are low, probably due to the sociological conditions of learning (Berglund et al., 1971, O’Connell, 1989). In addition, the integration of peripheral information by physiological processes is complex, involving also non-olfactory — for instance trigeminal — pathways (Cain et al., 1980, Silver et al, 1988). As a consequence, a number of studies have considered restricted portions of the olfactory space in order to determine chemical similarities between members of “odorant families”. Another interesting approach, is based on the assumption that there is a correspondence between specific anosmia known as a perceptual disfunction limited to an odorant family or note and genetic deficits of selective receptors in affected human subjects. Increasing numbers (several tenths) of different specific anosmias have been reported, thus suggesting the existence of several tenths of receptor sites (Amoore, 1982). Nevertheless, odorants are often described by multiple terms and thus can belong to several odorant families (Beets, 1982, Boelens, 1983). For example, beta-damascone shows a complicated odor profile in which fruity-flowery, exotic-spicy and chrysanthenum-like elements predominate (Olhoff, 1986). Moerover, correct analysis of a given odour requires several successive sniffs (Laing, 1983) what possibly means that time could be a pertinent factor in odour coding.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Refererences

  • Amoore JE (1982) Odor theory and odor classification. In Theimer, ET (ed), Frangance chemistry. The science of the sense of smell, Academic Press, New York, London, pp 27–76.

    Google Scholar 

  • Anholt RRH, Mumby SM, Stoffers DA, Girard PR, Kuo JF, Snyder SH (1987) Transduction proteins of olfactory receptor cells: Identification of guanine nucleotide binding proteins and protein kinase C. Biochem, 26: 788–795.

    Article  CAS  Google Scholar 

  • Astic L, Saucier D (1986) Anatomical mapping of the neuroepithelial projection to the olfactory bulb in the rat. Br Res Bull, 16: 445–454.

    Article  CAS  Google Scholar 

  • Baylin F (1979) Temporal patterns and selectivity in the unitary responses of olfactory receptors in the tiger salamander. J Gne Physiol. 74: 17–36.

    Article  CAS  Google Scholar 

  • Baylin F, Moulton DG (1979) Adaptation and Cross adaptation to odor stimulation of olfactory receptors in the tiger salamander. J. Gen Physiol 74: 37–55.

    Article  PubMed  CAS  Google Scholar 

  • Beets MGJ (1982) Odor and stimulant structure. In Theimer, ET (ed), Frangance chemistry. The science of the sense of smell, Academic Press, New York, London, pp 77–122.

    Google Scholar 

  • Bell, GA, Laing DG, Panhuber H (1987) Odour mixture suppression: evidence for a peripheral mechanism in human and rat. Br Res, 426: 8–18.

    Article  CAS  Google Scholar 

  • Berglund, B, Berglund U, Ekman G, Engen T (1971) Individual psychophysical functions for 28 odorants. Percept Psychophys, 9, 379–384.

    Article  Google Scholar 

  • Boelens H (1983) Structure-activity relationships in chemoreception by human olfaction. TIPS, 421–426.

    Google Scholar 

  • Cain WS, Murphy CL (1980) Interaction between chemoreceptive modalities od odour and irritation. Nature, 284: 255–257.

    Article  PubMed  CAS  Google Scholar 

  • Chastrette M (1981) An approach to a classification of odours using physico-chemical parameters. Chem. senses 6: 157–163.

    Article  CAS  Google Scholar 

  • Chen Z, Lancet D (1984) Membrane proteins unique to vertebrate olfactory cilia: candidates for sensory receptor molecules. Proc. Natl. Acad. Sci., 81: 1859–1863.

    Article  PubMed  CAS  Google Scholar 

  • Costanzo RM, O’Connell RJ (1978) Spatially organized projections of hamster olfactory nerves. Br Res, 139: 327–332.

    Article  CAS  Google Scholar 

  • Daval G, Leveteau J, Mac Leod P (1970) Electro-olfactogramme local et discrimination olfactive chez la grenouille. J Physiol Paris, 62: 477–488.

    PubMed  CAS  Google Scholar 

  • Davies JT (1965) A theory of the quality of odours. J Theor Biol, 8: 1–7.

    Article  PubMed  CAS  Google Scholar 

  • Delaleu JC, Holley A (1980) Modification of transduction mechanism in the frog’s olfactory mucosa using a thiol reagent as olfactory stimulus. Chem Senses, 3: 205–218.

    Article  Google Scholar 

  • Doving KB (1974) Odorant properties correlated with physiological data. N.Y. Acad of Sci, 237: 184–192.

    Article  CAS  Google Scholar 

  • Dravnieks A, Laffort P (1972) Physico-chemical basis of quantitative and qualitative odor discrimination in humans. In Schneider D (ed), Olfaction and Taste 4, Wissens-Verlag-MBH, Stuttgart, 142–148.

    Google Scholar 

  • Dreesen TD, Koch RB (1982) Odorous chemical perturbations of (Na2+ K+)–dependent ATPase activities. Biochem J, 203: 69–75.

    PubMed  CAS  Google Scholar 

  • Duchamp A, Revial MF, Holley A, Mac Leod P (1974) Odor discrimination by frog olfactory receptors. Chem Senses 1: 213–233.

    Article  CAS  Google Scholar 

  • Duchamp-Viret P, Duchamp A, Vigouroux M (1989) Amplifying role of convergence in olfactory system: comparison of receptor cell and second order neuron sensitivities. J Neurophysiol 61: 1085–1094.

    PubMed  CAS  Google Scholar 

  • Edwards DA, Mather RA, Dodd GH (1988) Spatial variation in response to odorants on the rat olfactory epithelium. Experientia, 44: 208–211.

    Article  PubMed  CAS  Google Scholar 

  • Eminet BP, Chastrette M (1983) Discrimination of camphoraceous substances using physico-chemical parameters. Chem Senses, 7: 293–300.

    Article  CAS  Google Scholar 

  • Fesenko EE, Novoselov VI, Novikov, JV (1985) Molecular mechanisms of olfactory reception. VI Kinetic characteristics of camphor interaction with binding sites of rat olfactory epithelium. Biochem Biophys Acta 839: 268–275.

    PubMed  CAS  Google Scholar 

  • Fesenko EE, Novoselov VI, Bystrova MF (1987) The subunits of specific odor-binding glycoproteins from rat olfactory epithelium. FEB, 219: 224–226

    Article  CAS  Google Scholar 

  • Fesenko EE, Novoselov VI, Bystrova MF (1988) Properties of odour-binding glycoproteins from rat olfactory epithelium. Biochem. Biophys. Acta, 937: 369–378.

    Article  PubMed  CAS  Google Scholar 

  • Gennings JN, Gower DB, Bannister GH (1977) Studies on the receptor to 5 -androst16-ene-3-one in sow nasal mucosa. Biochem. Biophys. Acta, 496: 547.

    PubMed  CAS  Google Scholar 

  • Gesteland RC, Lettvin JY, Pitts WH, Rojas A (1963) Odor specificities of the frog’s olfactory receptors. In Zotterman (ed.), Olfaction and Taste, vol 1, Pergamon Press, London, pp 7–21.

    Google Scholar 

  • Gesteland RC, Getchell, TV (1972) The chemistry of olfactory reception: stimulus specific protection from sulfhydryl reagent inhibition. Proc Nat Acad Sci USA, 69: 1494–1498.

    Article  PubMed  Google Scholar 

  • Gesteland RC, Yancey RA, Farbman AI (1982) Development of olfactory receptor neuroselectivity in the rat fetus, Neurosci., 7: 3127–3136.

    Article  CAS  Google Scholar 

  • Getchell TV (1974) Unitary responses in frog olfactory epithelium to sterically related molecules at low concentration. J Gen Physiol, 64: 241–261.

    PubMed  CAS  Google Scholar 

  • Getchell TV, Shepherd GM (1978) Adaptative properties of olfactory receptors analysed with odour pulses of varying durations. J Physiol, London, 282: 541–560.

    CAS  Google Scholar 

  • Goldberg SJ, Turpin J, Price S (1979) Anisole binding protein from olfactory epithelium: evidence for a role in transduction. Chem. Senses, 4: 207–214.

    Article  CAS  Google Scholar 

  • Gross-Isserof R, Lancet D (1988) Concentration-dependent changes of perceived odor quality. Chem Senses, 13: 191–204.

    Article  Google Scholar 

  • Harding JW, Getchell TV, Margolis FL (1978) Denervation of olfactory pathway in mice. V Long-term effect of ZnSO4 intranasal irrigation on behavior, biochemistry and morphology. Br Res, 140: 271–285.

    Article  CAS  Google Scholar 

  • Kashiwayanagi M, Sai K, Kurihara K (1987) Cell sustensions from porcine olfactory mucosa: Changes in Membrane Potential and membrane fluidity in response to various odorants. J. Gen. Physiol., 89: 443–457.

    Article  PubMed  CAS  Google Scholar 

  • Kauer JS, Moulton DG (1974) Responses of olfactory bulb neurons to odour stimulations of small nasal areas in the salamander. J Physiol, London, 243: 717–737.

    CAS  Google Scholar 

  • Laing DG (1983) Natural sniffing gives optimum odour perception for humans. Perception, 12: 99–117.

    Article  PubMed  CAS  Google Scholar 

  • Lee KH, Wells RG, Reed RR (1987) Isolation of an olfactory cDNA: Similarity to retinol-binding protein suggest a role in olfaction. Science, 235: 1053–1056.

    Article  PubMed  CAS  Google Scholar 

  • Mackay-Sim A, Shaman P, Moulton DG (1982) Topographic coding of olfactory quality: odorant-specific patterns of epithelial responsivity in the salamander. J Neurophysiol, 48: 584–596.

    PubMed  CAS  Google Scholar 

  • Mackay-Sim A, Nathan MH (1984) The projection from olfactory epithelium to the olfactory bulb in the salamander, Ambystoma tigrinum. Anat Embryol 170: 93–97.

    Article  PubMed  CAS  Google Scholar 

  • Mustaparta A (1971) Spatial distribution of receptor-responses to stimulation with different odours. Acta Physiol Scand, 82: 154–166.

    Article  PubMed  CAS  Google Scholar 

  • O’Connel RJ, Stevens DA, Akers RP, Coppola DM, Grant AJ (1989) Individual differences in the qualitative responses of human subjects to various odors. Chem Senses 14: 293–302.

    Article  Google Scholar 

  • Ohloff G, (1986) Chemistry of odor stimuli. Experientia, 42: 271–279.

    Article  PubMed  CAS  Google Scholar 

  • Pace U, Hanski E, Salomon Y, Lancet D (1985) Odorant-sensitive adenylate cyclase may mediate olfactory reception Nature 316: 255–258.

    Article  PubMed  CAS  Google Scholar 

  • Pelosi P, Baldaccini NE, Pisanelli AM (1982) Identification of a specific olfactory receptor for 2-isobutyl-3-methoxy pyrazine. Biochem. J, G. 201: 245–248.

    CAS  Google Scholar 

  • Pevsner J, Trifiletti RR, Strittmatter S (1985) Isolation and characterisation of an olfactory receptor protein for odorant pyrazines. Proc Natl Acad Sci USA 82: 3050–3054.

    Article  PubMed  CAS  Google Scholar 

  • Polak EH (1973) Multiple profile-multiple receptor site model for vertebrate olfaction. J theor Biol, 40: 469–484.

    Article  PubMed  CAS  Google Scholar 

  • Price S (1978) Anisole binding protein from dog olfactory epithelium. Chem Senses, 3: 51–55.

    Article  CAS  Google Scholar 

  • Revial MF, Duchamp A, Holley A (1978) Odour discrimination by frog olfactory receptors: a second study. Chem Senses, 3: 7–21.

    Article  CAS  Google Scholar 

  • Revial MF, Sicard G, Duchamp A, Holley A (1982) New studies on odour discrimination in the frog’s olfactory receptor cells. II Mathemathical analysis of electrophysiological responses. Chem. Senses, 8: 179–194.

    Article  Google Scholar 

  • Saucier D, Astic L (1986) Analysis of the topographical organization of olfactory epithelium projection in the rat. Br Res Bull, 16: 455–462.

    Article  CAS  Google Scholar 

  • Schiffman SS (1974) Physico chemical correlates of olfactory quality. Science, 185: 112–117.

    Article  PubMed  CAS  Google Scholar 

  • Shirley SG, Robinson CJ, Dodd GH (1987) The influence of temperature and membrane-fluidity changes on the olfactory adenylate cyclase of the rat. Biochem J 245: 613–616.

    PubMed  CAS  Google Scholar 

  • Shirley SG, Polak E, Dodd GH (1983) Selective inhibition of rat olfactory receptors by concanavalin A. Biochem Soc Transact, 11: 780–781.

    CAS  Google Scholar 

  • Sicard G, Holley A (1984) Receptor cell responses to odorants: similarities and differences among odorants. Br Res, 292: 283–296.

    Article  CAS  Google Scholar 

  • Sicard G (1985) Olfactory discrimination of structurally related molecules: receptor cell responses to camphoraceous odorants. Br Res, 326: 203–215.

    Article  CAS  Google Scholar 

  • Sicard G (1986) Electrophysiological recordings from olfactory receptor cells in adult mice. Br Res, 397: 405–408.

    Article  CAS  Google Scholar 

  • Silver WL, Arzt AH, Mason JR (1988) A comparison of the discrimininatory ability and sensitivity of trigeminal and olfactory systems to chemical stimuli in the tiger salamander. J Comp Physiol A, 164: 55–66.

    Article  PubMed  CAS  Google Scholar 

  • Steward WB, Pedersen PE, Greer CA, Shepherd GM (1985) The topography of olfactory epithelium to olfactory bulb projections in the rat. Chem Senses, 10: 400

    Google Scholar 

  • Thommesen G, Doving KB (1977) Spatial distribution of EOG in the rat: a variation with odour quality. Acta Physiol Scand, 99: 270–280.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sicard, G. (1990). Receptor Selectivity and Dimensionality of Odours at the Stage of the Olfactory Receptor Cells. In: Schild, D. (eds) Chemosensory Information Processing. NATO ASI Series, vol 39. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-75127-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-75127-1_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-75129-5

  • Online ISBN: 978-3-642-75127-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics