Skip to main content

Animated Pseudocolor Activity Maps (Pam’s): Scientific Visualization of Brain Electrical Activity

  • Conference paper
Book cover Chemosensory Information Processing

Part of the book series: NATO ASI Series ((ASIH,volume 39))

Abstract

Major advances in neuroscience have often followed directly from the application of new and more powerful methodological approaches to the study of brain structure and function (Clarke & Jacyna, 1987). Within the last decade a new technique has been developed that allows both brain structure and function to be studied in a closely integrated and highly complimentary fashion. This technique is multiple-site optical recording of membrane potential, or more simply, optical recording. Optical recording is based upon the ability of certain vital dyes (potentiometric probes) to optically signal changes in intracellular membrane potential. By viewing brain tissue stained with a voltage-sensitive dye with a suitable light detector system, changes in neuronal activity can be monitored simultaneously from a 100 or more contiguous anatomical regions (cf. Grinvald et al., 1988).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adrian ED (1950) Sensory discrimination with some recent evidence from the olfactory organ. Br Med Bull 6:330–333

    PubMed  CAS  Google Scholar 

  • Adrian ED (1951) Olfactory discrimination. Annee Psychol 50:107–113

    Article  Google Scholar 

  • Clarke E, Jacyna, LS (1987) Nineteenth-century origins of neuroscientific concepts. Univ of Calif Press, Berkekey, CA

    Google Scholar 

  • Cohen LB, Lesher S (1986) Optical monitoring of membrane potential. In: DeWeer P, Salzberg BM (eds) Optical methods in cell physiology. New York, pp 71–99

    Google Scholar 

  • Gesteland RC (1971) Neural coding in olfactory receptor cells. In: Beidler LM (ed) Handbook of sensory physiology, olfaction. Springer, New York, pp 132–150

    Google Scholar 

  • Getchell TV (1974) Unitary responses in the frog olfactory epithelium to sterically related molecules at low concentrations. J Gen Physiol 64:241–261

    PubMed  CAS  Google Scholar 

  • Getchell TV, Shepherd GM (1978) Responses of olfactory receptor cells to step pulses of odour at different concentrations in the salamander. J Physiol (Lond) 282:521–540

    CAS  Google Scholar 

  • Grinvald A, Frostig RD, Lieke E, Hildesheim R (1988) Optical imaging of of neuronal activity. Physiol Rev 68:1285–1366

    PubMed  CAS  Google Scholar 

  • Herrick CJ (1948) The brain of the tiger salamander. Univ of Chicago Press, Chicago, IL

    Google Scholar 

  • Holley A, Duchamp A, Revial MF, Juge A, MacLeod P (1974) Qualitative and quantitative discrimination in the frog olfactory receptors: analysis of electrophysiological data. Ann NY Acad Sci 237:102–114

    Article  PubMed  CAS  Google Scholar 

  • Kauer JS, Senseman DM, Cohen LB (1987) Odor-elicited activity monitored simultaneously from 124 regions of the salamander olfactory bulb using a voltage-sensitive dye. Brain Res 418:255–261

    Article  PubMed  CAS  Google Scholar 

  • Kauer JS (1988) Real-time imaging of evoked activity in local circuits of the salamander olfactory bulb. Nature (Lond) 331:166–168

    Article  CAS  Google Scholar 

  • Liljeborg A (1988) Digital position encoding of galvanometer scanner in a laser microscope. Optical Eng 27:818–822

    Google Scholar 

  • Moulton DG (1967) Spatio-temporal patterning of response in the olfactory system. In: Hayashi T (ed) Olfaction and Taste II, Pergamon, Oxford pp 109–116

    Google Scholar 

  • Moulton DG (1976) Spatial patterning of responses to odors in the peripheral olfactory system. Physiol Rev 56:578–593

    PubMed  CAS  Google Scholar 

  • Moulton DG, Tucker D (1964) Electrophysiology of the olfactory system. Ann NY Acad Sci 116:380–428

    Article  PubMed  CAS  Google Scholar 

  • Moulton DG, Beidler LM (1967) Structure and function in the peripheral olfactory system. Physiol Rev 47:1–52

    PubMed  CAS  Google Scholar 

  • Nash PL, Muljadi P, Wayner MJ, Senseman DM (1988) High-speed imaging of olfactory of electrical activity: watching the brain think on MTV/2. Neural Networks 1:268

    Article  Google Scholar 

  • O’Connell RJ, Mozell MM (1969) Quantitative stimulation of frog olfactory receptors. J Neurophysiol 32:51–63

    PubMed  Google Scholar 

  • Orbach HS, Cohen LB (1983) Optical monitoring of activity from many areas of the in vivo and in vitro salamander olfactory bulb: a new method for studying functional organization in the vertebrate central nervous system. J. Neurosci 3:2251–2262

    PubMed  CAS  Google Scholar 

  • Salzberg BM, Obaid AL, Senseman DM, Gainer H (1983) Optical recording of action potentials from vertebrate nerve terminals using potentiometric probes provides evidence for sodium and calcium components. Nature (Lond) 306:36–40

    Article  CAS  Google Scholar 

  • Senseman, DM, Horwitz IS, Salzberg BM (1987) MSORTV imaging of electronic conduction in an electrical syncitium: optical recording of polarization spread in a simple salivary gland. J Exp Zool 244:79–89

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Senseman, D.M., Vasquez, S., Nash, P.L. (1990). Animated Pseudocolor Activity Maps (Pam’s): Scientific Visualization of Brain Electrical Activity. In: Schild, D. (eds) Chemosensory Information Processing. NATO ASI Series, vol 39. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-75127-1_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-75127-1_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-75129-5

  • Online ISBN: 978-3-642-75127-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics