Advertisement

Olfactory Bulb and Antennal Lobe

  • J. Boeckh
  • P. Distler
  • K. D. Ernst
  • M. Hösl
  • D. Malun
Part of the NATO ASI Series book series (volume 39)

Abstract

At first glance it may appear unrewarding to compare the functional morphology of two nerve centres so different in origin and construction as the vertebrate olfactory bulb and the antennal lobe of insects. Indeed, viewed as a venture in phylogenetically based comparative neuroanatomy, it does not even seem legitimate: one is a typical ganglion in the ropeladder nervous system of an arthropod, and the other is part of the cortex of the telencephalon of a vertebrate. However, each of these centres is the first central station in the olfactory pathway of animals on a par with one another in their ability to detect, discriminate and identify even complex scents, and with equivalent skills in locating and seeking out odour sources and in learning odours. It would be interesting to know whether these achievements are based on similar neural functions in the two animal groups. A number of questions arise. Do the two systems employ common priniciples of signal processing, based on similarities in function and connections of the neurons? Do such similarities extend to specific circuitry and functional types of neurons? Are the kinds of performance for which mammals require many million receptor cells and neurons actually the same as those that insects manage with a few hundred thousand receptor cells and a few thousand neurons?

Keywords

Olfactory Bulb Antennal Lobe Olfactory Pathway Local Interneuron American Cockroach 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ache BW, Derby CD (1985) Functional organization of olfaction in crustaceans. Trans Neurosci 8:356–360CrossRefGoogle Scholar
  2. Altner H, Prillinger L (1980) Ultrastructure of invertebrate chemo-, thermo-, and hygroreceptors and its functional significance. Int Rev Cytol 67:69–139CrossRefGoogle Scholar
  3. Andres KH (1975) Neue morphologische Grundlagen zur Physiologie des Riechens und Schmeckens. Arch Oto-Rhino-Laryng 210:1–41CrossRefGoogle Scholar
  4. Arbas A, Humphreys CJ, Ache BW (1988) Morphology and physiological properties of interneurons in the olfactory midbrain of the crayfish, Procambarus clarkii. J Comp Physiol A 164: 231–241PubMedCrossRefGoogle Scholar
  5. Boeckh J (1962) Elektrophysiologische Untersuchungen an einzelnen Geruchsrezeptoren auf den Antennen des Totengräbers (Necrophorus, Coleoptera). Z vergl Physiol 46: 212–248CrossRefGoogle Scholar
  6. Boeckh J (1974) Die Reaktionen olfaktorischer Neurone im Deutocerebrum von Insekten im Vergleich zu den Antwortmustern der Geruchssinneszellen. J Comp Physiol 90: 183–205CrossRefGoogle Scholar
  7. Boeckh J, Sandri C, Akert K (1970) Sensorische Eingänge und synaptische Verbindungen im Zentralnervensystem von Insekten. Z Zellforsch 103: 429–446PubMedCrossRefGoogle Scholar
  8. Boeckh J, Ernst KD, Sass H, Waldow U (1976) Zur nervösen Organisation antennaler Sinneseingänge bei Insekten unter besonderer Berücksichtigung der Riechbahn. Verh dt Zool Ges 69: 123–139Google Scholar
  9. Boeckh J, Ernst KD, Polz H (1983) Convergence of inputs from different sense organs upon neurones of the central antennal pathway in insects. In: Horn E (ed) Multimodal convergences in sensory systems. G Fischer, Stuttgart New York, pp 143–148Google Scholar
  10. Boeckh J, Ernst KD, Sass H, Waldow U (1984) Anatomical and physiological characteristics of individual neurones in the central antennal pathway of insects. J Insect Physiol 30: 15–26CrossRefGoogle Scholar
  11. Boeckh J, Ernst KD (1987) Contribution of single unit analysis in insect to an understanding of olfactory function. J Comp Physiol A 161: 549–565CrossRefGoogle Scholar
  12. Boeckh J, Ernst KD, Selsam P (1987) Neurophysiology and neuroanatomy of the olfactory pathway in the cockroach. Ann NY Acad Sci 510: 39–43PubMedCrossRefGoogle Scholar
  13. Boeckh J, Ernst KD, Selsam P (1989) Double labeling reveals monosynaptic connection between antennal receptor cells and identified local interneurons of the deutocerebrum in the American cockroach. Zool Jb Anat, in pressGoogle Scholar
  14. Bretschneider F (1924) Über die Gehirne des Eichenspinners und des Seidenspinners Lasiocampa quercus L. und Bombyx mori). Jena Z Naturw 60:563–78Google Scholar
  15. Buchner E, Rodrigues S (1983) Autoradiographic localization of (3H) choline uptake in the brain of Drosophila melanogaster. Neurosci Lett 42:25–31PubMedCrossRefGoogle Scholar
  16. Burrows M, Boeckh J, Esslen J (1982) Physiological and morphological properties of interneurones in the deutocerebrum of male cockroaches which respond to female pheromone. J Comp Physiol 145: 447–457CrossRefGoogle Scholar
  17. Cajal SR (1911) Histologie du Systeme Nerveux de L’Homme et des Vertebres, Vol. II, Maloine, ParisGoogle Scholar
  18. Christensen TA, Hildebrand JG (1987) Functions, organisation, and physiology of the olfactory pathways in the Lepidopteran brain. In: Gupta AP (ed) Arthropod brain: its evolution, development, structure and functions. Wiley & Sons, New YorkGoogle Scholar
  19. Christensen TA, Hildebrand JG (1987) Male-specific, sex pheromone-selective projection neurons in the antennal lobes of the moth Manduca sexta. J Comp Physiol A 160: 553–569PubMedCrossRefGoogle Scholar
  20. Christensen TA, Mustaparta H, Hildebrand JG (1989) Discrimination of sex pheromone blends in the olfactory system of the moth. Chemical Senses 14: 463–477CrossRefGoogle Scholar
  21. Clancy AN, Schoenfeld TA, Macrides F (1985) Topographic organization of peripheral input to the hamster main olfactory bulb. Chem Senses 10: 399–400Google Scholar
  22. Costanzo RM, O’Connell RJ (1980) Receptive fields of second order neurons in the olfactory bulb of the hamster. J Gen Physiol 76: 53–68PubMedCrossRefGoogle Scholar
  23. De Jong R (1988) Host odour recognition by the colorado potato beetle. Ph.D-thesis, Agricultural University Wageningen, NetherlandsGoogle Scholar
  24. Distel H, Martin H, Hudson R (1987) The modified glomerular region and pattern of 2-DG uptake in the olfactory bulb of rabbit pups exposed to nipple-search pheromone. Chem Senses 12: 181–182Google Scholar
  25. Distler P (1989a) Histochemical demonstration of GABA-like immunoreactivity in cobalt labeled neuron individuals in the insect olfactory pathway. Histochemistry 91:245–249CrossRefGoogle Scholar
  26. Distler P (1989b) Synaptic contacts of GABA-immunoreactive neurons in the antennal lobes of the cockroach Periplaneta americana. In: Elsner N, Singer W (eds) Dynamics and Plasticity in Neuronal Systems. Thieme Stuttgart New York, p 70Google Scholar
  27. Duchamp A (1982) Electrophysiological responses of olfactory bulb neurons to odour stimuli in the frog. A comparison with receptor cells. Chem Senses 7: 191–210CrossRefGoogle Scholar
  28. Ernst KD, Boeckh J (1983) A neuroanatomical study on the organization of the central antennal pathways in insects. Cell Tissue Res 229: 1–22PubMedCrossRefGoogle Scholar
  29. Flanagan D, Mercer AR (1989) Morphology and response characteristics of neurones in the deutocerebrum of the brain in the honeybee Apis mellifera. J Comp Physiol A 164: 483–494CrossRefGoogle Scholar
  30. Gall GM, Stewart HC, Seroogy KB, Jones EG, Haycock JW (1987) Evidence for coexistence of GABA and dopamine in neurons of the rat olfactory bulb. J Comp Neurol 266–307–318CrossRefGoogle Scholar
  31. Girardot M-N, Derby CD (1988) Neural coding of quality of complex olfactory stimuli in lobsters. J Neurophysiol 60: 303–324PubMedGoogle Scholar
  32. Greer CA, Stewart WB, Kauer JS, Shepherd GM (1981) Topographical and laminar localization of 2-deoxyglucose uptake in the rat olfactory bulb induced by electrical stimulation of the olfactory nerves. Brain Res 217: 279–293PubMedCrossRefGoogle Scholar
  33. Hamilton KA, Kauer JS (1985) Intracellular potentials of salamander mitral/tufted neurons in response to odor stimulation. Brain Res 338: 181–185PubMedCrossRefGoogle Scholar
  34. Hanström B (1928) Vergleichende Anatomie des Nervensystems der wirbellosen Tiere. Springer, BerlinGoogle Scholar
  35. Hartmann N (1987) Function and development of sensory cells in ‘attractant sensilla’: physiological differences between larvae and adults of Periplaneta americana L. Chem Senses 12: 210Google Scholar
  36. Hösl M (1989) Receptive fields on the antenna for deutocerebral pheromone-sensitive projection neurons in the American cockroach. In: Elsner N, Singer W (eds) Dynamics and Plasticity in Neuronal Systems. Thieme Stuttgart New York, p 67Google Scholar
  37. Holley A, MacLeod P (1977) Transduction et codage des informations olfactives chez les vertebres. J Physiol (Paris) 73: 725–828Google Scholar
  38. Hoskins SG, Homberg U, Kingan TG, Christensen TA, Hildebrand JG (1986) Immunocytochemistry of GABA in the antennal lobes of the sphinx moth Manduca sexta. Cell Tissue Res 244: 243–252PubMedCrossRefGoogle Scholar
  39. Jawlowski H (1948) Studies on the insect brain. Ann Univ M Curie Sklodowska C 3: 1–30Google Scholar
  40. Jourdan F, Duveau A, Astic L, Holley A (1980) Spatial patterns of 2-deoxyglucose uptake in the olfactory bulb of rats stimulated with two different odors. Br Res 188: 139–154CrossRefGoogle Scholar
  41. Kaissling KE, Priesner E (1970) Die Riechschwelle des Seidenspinners. Naturwissenschaften 57: 23–28PubMedCrossRefGoogle Scholar
  42. Kaissling KE (1971) Insect olfaction. In: Beidler LM (ed) Handbook of sensory Physiology. Springer, Berlin, Vol 4, pp 351–431Google Scholar
  43. Kanzaki R, Arbas EA, Strausfeld NJ, Hildebrand JG (1989) Physiology and morphology of projection neurons in the antennal lobe of the male moth Manduca sexta. J Comp Physiol A 165: 427–453PubMedCrossRefGoogle Scholar
  44. Kauer JS (1974) Response patterns of amphibian olfactory bulb neurones to odour stimulation. J Physiol (Lond) 243: 695–715Google Scholar
  45. Kauer JS (1981) Olfactory receptor cell staining using horse-radish peroxidase. Anat Rec 200: 331–336PubMedCrossRefGoogle Scholar
  46. Kauer JS (1987) Coding in the olfactory system. In: Finger TE, Sievers WL (eds) Neurobiology of taste and smell. Wiley & Sons, New York, pp 205–231Google Scholar
  47. Kauer JS, Moulton DG (1974) Responses of olfactory bulb neurones to odour stimulation of small nasalareas in the salamander. J Physiol (Lond) 243: 717–737Google Scholar
  48. Kauer JS, Shepherd GM (1977) Analysis of the onset phase of olfactory bulb unit response to odour pulses in the salaman der. J Physiol (Lond) 272: 495–516Google Scholar
  49. Koontz MA, Schneider D (1987) Sexual dimorphism in neuronal projections from the antennae of silk moths (Bombyx mori, Antheraea polyphemus) and the gypsy moth ( Lymantria dispar ). Cell Tissue Res 249: 39–50CrossRefGoogle Scholar
  50. Kramer E (1986) Turbulent diffusion and pheromone-triggered anemotaxis. In: Payne TL, Birch MC, Kennedy CEJ (eds) Mechanisms in insect olfaction. Clarendon Press Oxford, pp 59–68Google Scholar
  51. Land IJ (1973) Localized projections of olfactory neurons to the rabbit olfactory bulb. Brain Res 63: 153–166PubMedCrossRefGoogle Scholar
  52. Levetau J, MacLeod P (1966) Olfactory discrimination in the rabbit olfactory glomerulus. Science 153: 175–176CrossRefGoogle Scholar
  53. Light DM (1986) Central integration of sensory signals: An exploration of processing of pheromonal and multimodal information in lepidopteran brains. In: Payne TL, Birch MC, Kennedy CEJ (eds) Mechanisms in insect olfaction. Oxford University Press, London, pp 287–301Google Scholar
  54. Malun D (1989) Fine structure of morphologically and physiologically identified projection neurons in the antennal lobe of Periplaneta americana. In: Elsner N, Singer W (eds) Dynamics and Plasticity in Neuronal Systems. Thieme Stuttgart New York, p 68Google Scholar
  55. Matsumoto SG, Hildebrand JG (1981) Olfactory mechanisms in the moth Manduca sexta: response characteristics and morphology of central neurons in the antennal lobes. Proc R Soc Lond B 213: 249–277CrossRefGoogle Scholar
  56. Mori K (1987) Membrane and synaptic properties of identified neurons in the olfactory bulb. Progr Neurobiol 29: 275–320CrossRefGoogle Scholar
  57. Mori K, Takagi SF (1975) Spike generation in the mitral cell dendrite of the rabbit olfactory bulb. Brain Res 100: 685–689PubMedCrossRefGoogle Scholar
  58. Mori K, Fujita SC, Imamura K, Obata K (1985) Immunohistochemical study of subclasses of olfactory nerve fibers and their projections to the olfactory bulb in the rabbit. J Comp Neurol 242: 214–229PubMedCrossRefGoogle Scholar
  59. Murlis J (1986) The structure of odor plumes. In: Payne TL, Birch MC, Kennedy CEJ (eds) Mechanisms in insect olfaction. Clarendon Press, Oxford, pp 59–79Google Scholar
  60. Mustaparta H (1971) Spatial distribution of receptor responses to stimulation with different odours. Acta Physiol Scand 82: 154–166PubMedCrossRefGoogle Scholar
  61. Pareto A (1972) Die zentrale Verteilung der Fühlerafferenz bei Arbeiterinnen der Honigbiene, Apis melifera L. Z Zellforsch 131: 109–10PubMedCrossRefGoogle Scholar
  62. Pinching AJ, Powell TPS (1971) The neuropil of the glomeruli of the olfactory bulb. J Cell Sci 9: 347–377PubMedGoogle Scholar
  63. Revial MF, Sicard G, Duchamp A, Holley A (1982) New studies on odour discrimination in the frog’s olfactory receptor cells. I. Experimental results. Chem Senses 7: 175–190CrossRefGoogle Scholar
  64. Revial MF, Sicard G, Duchamp A, Holley A (1983) New studies on odour discrimination in the frog’s olfactory receptor cells. II. Mathematical analysis of electrophysiological responses. Chem Senses 8: 179–190CrossRefGoogle Scholar
  65. Rospars JP (1983) Invariance and sex-specific variations of the glomerular organization in the antennal lobes of a moths, Mamestra brassicae and a butterfly, Pieris brassicae. J Comp Neurol 220: 80–96PubMedCrossRefGoogle Scholar
  66. Rospars JP (1988) Structure and development of the insect antennodeutocerebral system. Int J Insect Morphol & Embryol 17: 243–294CrossRefGoogle Scholar
  67. Rospars JP, Chambille I (1981) The deutocerebrum of the cockroach Blaberus craniifer Burm. Quantitative study and automated identification of the glomeruli. J Neurobiol 12: 221–47PubMedCrossRefGoogle Scholar
  68. Sass H (1978) Olfactory receptors on the antenna of Periplaneta americana: REsponse constellations that encode food odours. J Comp Physiol 128: 227–233CrossRefGoogle Scholar
  69. Sass H (1980) Physiological and morphological identification of olfactory receptors on the antenna of male Periplaneta americana. In: van der Starre H (ed) Olfaction and Taste VII. IRL, London, pp 194Google Scholar
  70. Salecker I, Distler P (1989) Immunohistochemical localisation of dopamine-, GABA- and choline acetyltransferase (Chat)-reactivity in neurons of the antennal lobes in the American cockroach, Periplaneta americana. In: Elsner N, Singer W (eds) Dynamics and Plasticity in Neuronal Systems. Thieme Stuttgart New York, p 69Google Scholar
  71. Schaller D (1978) Antennal sensory system of Periplaneta americana L. Cell Tissue Res 19: 121–139Google Scholar
  72. Schild D (1988) Principles of odor coding and a neural network for odor discrimination. Biophys J 54: 1001–1011PubMedCrossRefGoogle Scholar
  73. Schneider D, Kaissling KE (1957) Der Bau der Antenne des Seidenspinners Bombyx mori L. II. Sensillen, cuticulare Bildungen und innerer Bau. Zool Jb Anat. 76: 223–250Google Scholar
  74. Schürmann FW, Wechsler W (1969) Elektronenmikroskopische Untersuchung am Antennallobus des Deutocerebrum der Wanderheuschrecke Locusta migratoria. Z Zellforsch 95: 223–48PubMedCrossRefGoogle Scholar
  75. Scott JW (1986) The olfactory bulb and central pathways. Experientia 42: 223–231PubMedCrossRefGoogle Scholar
  76. Scott JW, Harrison TA (1987) The olfactory bulb: Anatomy and Physiology. In: Finger TE, Sievers WL (eds) Neurobiology of taste and smell. Wiley & Sons, New York, pp 151–178Google Scholar
  77. Selsam P (1987) Duftcodierung, Morphologie und synaptische Verschaltung identifizierter Neurone im Deutocerebrum der Schabe. PhD-thesis, University of Regensburg, FRGGoogle Scholar
  78. Seelinger G, Gagel S (1985) On the function of sex pheromone components in Periplaneta americana: improved odour source localization with periplanone-A. Physiol Ent 10: 221–234CrossRefGoogle Scholar
  79. Shepherd GM (1972) Synaptic organization of the mammalian olfactory bulb. Physiol Rev 52: 864–917PubMedGoogle Scholar
  80. Shepherd GM (1981) The olfactory glomerulus; its significance for sensory processing. In: Katsuki Y, Norgren R, Sto M (eds) Brain Mechanisms of Sensation. Wiley, New York, pp 209–223Google Scholar
  81. Stewart, WB, Kauer JS, Shepherd GM (1979) Functional organization of rat olfactory bulb, analyzed by the 2-deoxyglucose method. J Comp Neurol 185: 715–734PubMedCrossRefGoogle Scholar
  82. Stocker RF, Singh RN, Schorderet M, Siddiqi 0 (1983) Projection patterns of different types of antennal sensilla in the antennal glomeruli of Drosophila melanogaster. Cell Tissue Res 232: 237–248Google Scholar
  83. Teicher MH, Stewart WB, Kauer JS, Shepherd GM (1980) Suckling pheromone stimulation of a modified glomerular region in the developing rat olfactory bulb revealed by the 2-deoxyglucose method. Brain Res 194: 530–535PubMedCrossRefGoogle Scholar
  84. Tolbert LP, Hildebrand JG (1981) Organization and synaptic ultrastructure of glomeruli in the antennal lobes of the moth Manduca sexta: A study using thin sections and freeze-fracture. Proc R Soc London B 213: 279–301CrossRefGoogle Scholar
  85. Van As W, Kauer JS, Menco BPHM, Koster EP (1985) Quantitative aspects of the EOG in the tiger salamander. Chem Senses 10: 1–21CrossRefGoogle Scholar
  86. Waldow U (1975) Multimodale Neurone im Deutocerebrum von Periplaneta americana. J Comp Physiol 101: 329–341CrossRefGoogle Scholar
  87. Waldow U (1987) Untersuchungen am Ausgangsneuron eines Glomerulus im Deutocerebrum von Periplaneta americana. In: Elsner N, Creutzfeldt O (eds) New Frontiers in Brain Research (Proc 15 Göttingen Neurobiology Conference ), Thieme Stuttgart, p 76Google Scholar
  88. Waldrop B, Christensen TA, Hildebrand JG (1987) GABA-mediated synaptic inhibition of projection neurons in the antennal lobes of the sphinx moth, Manduca sexta. J Comp Physiol A 161:23–32PubMedCrossRefGoogle Scholar
  89. White EL (1972) Synaptic organization in the olfactory glomerulus of the mouse. Brain Res 37:69–80PubMedCrossRefGoogle Scholar
  90. Yamamoto C, Yamamoto T, Iwama K (1963) The inhibitory system in the olfactory bulb studied by intracellular recording. J Neurophysiol 26:403–415PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • J. Boeckh
    • 1
  • P. Distler
    • 1
  • K. D. Ernst
    • 1
  • M. Hösl
    • 1
  • D. Malun
    • 1
  1. 1.Institute for ZoologyUniversity of RegensburgGermany

Personalised recommendations