Geological Occurrence of Phyllosilicates. Application to Kaolinite, Talc, Sepiolite and Palygorskite Deposits

  • Alain Meunier
  • Jean-Hugues Thomassin
  • Alain Decarreau
Conference paper
Part of the NATO ASI Series book series (volume 21)

Abstract

Industrial names of natural materials do not designate well defined mineralogical species even when these products are as purified as possible. A simple name like “kaolinite” or “talc” hides a wide variety of crystalline state, chemical composition and associated impurities. These characteristics mostly depend on the physicochemical conditions which prevailed during the genesis of these materials in natural environments. In other words, kaolinite or talc are known to have noticeable differences in chemical composition and crystalline state when they originate in supergene, hydrothermal or metamorphic conditions. Associated minerals are also different: the supergene environment favours the formation of expandable clay minerals, carbonates and iron oxy-hydroxides while the hydrothermal one favours the growth of less expandable clay minerals, silicates, carbonates and sulphides. This is the main reason why the commercialized natural products must be carefully studied on a petrological and mineralogical point of view in order to control their effects on human environments.

Keywords

Clay Sulphide Silicate Sandstone Sedimentation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bailey S.W. (1988) - “Hydrous Phyllosilicates(exclusive of micas)”. Reviews in Mineralogy, vol. 19, Mineralogical Society of America, ‘725p.Google Scholar
  2. Bailey S.W., Brindley G.W., Johns W.D., Martin R.T. and Ross M. (1971) - Clay Mineral Soc. Report of Nomenclature Committee 1979–1980. Clays and Clay Minerals, 132–133.Google Scholar
  3. Brindley G.W. and Brown G. (1980) - Crystal structures of clay minerals and their X-ray identification. Monograph n°5, Mineralogical Society, London, 480 p.Google Scholar
  4. Brindley G.W. and Pé;dro G. (1972) - Report of the A.I.P.E.A. nomenclature committee. A.I.P.E.A. Newsletter, 4, 3–4.Google Scholar
  5. Brindley G.W., Bish D.L. and Wan H.M. (1977) - The nature of kerolite, its relation to talc and stevensite. Min. Mag., 41, 443–452.Google Scholar
  6. Brown C.E. (1973) - Talc. U. S. Geol. Surv. Prof. Paper, 820, 619-626Google Scholar
  7. Chopin C. (1981) - Talc-phengite: a widespread assemblage in high grade pelitic blueschists of the Western Alps. J. Petrol., 22, 628–650.Google Scholar
  8. Chopin C. and Monié P. (1984) - A unique magnesiochloritoid-bearing high pressure assemblage from the Monte Rosa, Western Alps: petrologic and 40Ar-39Ar radiometric study. Contrib. Mineral. Petrol., 87, 388–398.CrossRefGoogle Scholar
  9. Church T.M. and Velde B. (1979) - Geochemistry and origin of a deep-sea Pacific palygorskite deposit. Chem. Geol., 25, 31–39.CrossRefGoogle Scholar
  10. Couture R. (1977) - Composition and origin of palygorskite-rich and montmorillonite-rich zeolite containing sediments from the Pacific Ocean. Chem. Geol. 19, 113–130.CrossRefGoogle Scholar
  11. Fawcett J.J. and Yoder H.S. (1966) - Phase relationships in the system MgO-Al203-Si02H20. Am. Mineral., 51, 353–380.Google Scholar
  12. Floran R.J. and Papike J.J. (1978) - Mineralogy and petrology of the Gunflit Iron formation, Minnesota-Ontario: correlation of compositional and assemblage variations at low moderate grade. J. Petrol., 19, 215–288.Google Scholar
  13. Fontanaud A. and Meunier A. (1983) - Mineralogical facies of a serpentinized lherzolite from Pyré;né;es (France). Clay Min.,18, 77–88.CrossRefGoogle Scholar
  14. Harben P.W. and Bates R.L. (1984) - Geology of the nonmetallics. Metal Bulletin Inc. Ed., New York, 392 p.Google Scholar
  15. Jones B.F. and Galan E. (1988)–Sepiolite and palygorskite. In “Hydrous Phyllosilicates(exclusive of micas)”. Reviews in Mineralogy, vol. 19, S.W. Bailey Ed., 631–674.Google Scholar
  16. Kager P.C.A. and Oen I.S. (1983) - Iron-rich talc-opal-minnesotaite spherulites and crystallochemical relations of talc and minnesotaite. Mineral. Mag., 47, 229–231.CrossRefGoogle Scholar
  17. Lonsdale P.F., Bischoff J.L., Burns V.M., Kastner M. and Sweeney R.E.(1980)- A high temperature hydrothermal deposit on the seabed at a Gulf of California spreading center. Earth Planet. Sci. Letters, 49, 8–20.Google Scholar
  18. Martin Vivaldi J. L. and Linares Gonzales J. (1982) - A random intergrowth of sepiolite and attapulgite. Clays and clay minerals, 9, 592–602.CrossRefGoogle Scholar
  19. Maynard J. B. (1983) - Geochemistry of sedimentary ore deposits. Springer Verlag, New York, 305 p.Google Scholar
  20. Millot G. (1964) - Gé;ologie des argiles. Masson ed., Paris, 510 p.Google Scholar
  21. Muffler L.J.P. and White D.E. (1969) - Active metamorphism of upper Cenozoic sediments in the Salton Sea Geothermal field and the Salton Trough, Southern California. Bull. Geol. Soc. Amer., 80, 157–182.Google Scholar
  22. Muller J. P. (1988) - Analyse d’une formation laté;ritique meuble du Cameroun. Essai de traçage d’une diffé;renciation supergène par les paragenèses miné;rales secondaires.Google Scholar
  23. Thesis University Paris VII, 188p + annexes.Google Scholar
  24. Murray H.H. (1988)–Kaolin minerals: their genesis and occurrences. In “Hydrous Phyllosilicates(exclusive of micas)”. Reviews in Mineralogy, vol. 19, S.W. Bailey Ed., 67–89.Google Scholar
  25. Newmann A C D (1987) - Chemistry of clays and clay minerals. Monograph n°6, Mineralogical Society, London, 480 p.Google Scholar
  26. Nisio P. and Lardeaux J.M. (1987) - Retromorphic Fe-rich talc in low — temperature eclogites example from Monviso (Italian Western Alps). Bull. Minéral., 110, 427–437.Google Scholar
  27. Noack Y., Decarreau A. and Manceau A. (1986) - Spectroscopic and oxygen isotopic evidence for low and high temperature origin of talc. Bull. Miné;ral., 109, 253–263.Google Scholar
  28. Paquet H. (1970) - Evolution géochimique des minéraux argileux dans les altérations et les sols des climats méditerranéens et tropicaux à saisons contrastées. Bull. Serv. Carte Géol. Als. Lorraine, 30, 1–212.Google Scholar
  29. Paquet H., Duplay J., Valleron-Blanc M.M. and Millot G. (1987)–Octahedral compositions of individual particles in smectite-palygorskite and smectite-sepiolite assemblages. Proc. Int. Clay Conf., Denver 1985, Schultz L.G. Van Olphen H. and Mumpton F. A. ed., 73–77.Google Scholar
  30. Petit S., Decarreau A., Eymery J. P. and Thomassin J. H. (1988) - Synthèse de kaolinites ferriques à 200°C. Comparaison avec les kaolinites d’altération supergène: teneur en fer, morphologie et cristallinité. C. R. Acad. Sci., Paris, t. 307, série II, 1961–1966.Google Scholar
  31. Plançon A. and Tchoubar C. (1977 a) - Determination of structural defects in phyllosilicates by X-ray diffraction. I. Principle of calculation of the diffraction phenomenon. Clays and Clay Minerals, 25, 430–435.CrossRefGoogle Scholar
  32. Plançon A. and Tchoubar C. (1977 b) - Determination of structural defects in phyllosilicates by X-ray diffraction. II. Nature and proportion of defects in natural kaolinites. Clays and Clay Minerals, 25, 436–450.CrossRefGoogle Scholar
  33. Prost R. (1975) - Etude de l’hydratation des argiles: interaction eau-miné;ral et mé;canisme. Thesis, University of Paris, 100 p.Google Scholar
  34. Sandford R. F. (1982) - Growth of ultramafic reaction zones in greenschist to amphibolic facies metamorphism. Am. J. Sci., 282, 543–616.Google Scholar
  35. Schreyer W., Abraham K. and Kulke W. (1980) - Natural sodium phlogopite coexisting with potassium phlogopite and sodium aluminium talc in metamorphic evaporate sequence from Derray, Tell Atlas, Algeria. Contrib. Mineral. Petrol., 74, 223–233.Google Scholar
  36. Singer A. (1979) - Paligorskite in sediments: detrital, diagenetic or neoformed. A critical review. Geol. Rund., 68, 996–1008.Google Scholar
  37. Stonecipher S. A. (1976) - Origin, distribution and diagenesis of phillipsite and clinoptilolite in deep-sea sediments. Chem. Geol., 17, 307–318.Google Scholar
  38. Van der Heuvel R. C. (1966) - The occurence of sepiolite and attapulgite in the calcareous zone of a soil near Las Gances, New Mexico. Clays and clay minerals, Proc. 13th Nat. Conf., 193–208.Google Scholar
  39. Velde B. (1985) - Clay Minearls. A physico-chemical explanation of their occurence. Development in sedimentology, n° 40, Elsevier Ed., 427p.Google Scholar
  40. Weaver C.E. (1959) - The clay petrology of sediments. Clays and Clay Minerals, 6, 154–187. Winkler H.G.F. (1974) - Petrogenesis of metamorphic rocks. Springer Verlag Ed., Berlin, 320 p.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • Alain Meunier
    • 1
  • Jean-Hugues Thomassin
    • 1
  • Alain Decarreau
    • 2
  1. 1.Laboratoire de Pétrologie des Altérations HydrothermalesUniversitéde PoitiersFrance
  2. 2.Laboratoire de Pétrologie de la SurfaceUniversitéde PoitiersPoitiers CedexFrance

Personalised recommendations