Skip to main content

Energy Transformation and Fluorescence in Photosynthesis

  • Chapter
Particle Analysis in Oceanography

Part of the book series: NATO ASI Series ((ASIG,volume 27))

Abstract

The origins of in vivo chlorophyll fluorescence in unicellular algae are discussed with regard to the processes that regulate fluorescence yield and interpretation of fluorescence measurements as an indicator of algal primary production and physiological state. Emphasis is placed on limitations in interpretation of field data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson JM, Barrett J (1986) Light-harvesting pigment-protein complexes of algae. In Staehelin AL, Arntzen CJ, eds. Encyclopedia of Plant Physiology, New Series vol 19. Springer-Verlag, Berlin pp. 269–285

    Google Scholar 

  • Bates SS (1985) Sample conditioning for measurement of fluorescence induction of chlorophyll a in marine phytoplankton. J Plankton Res 7:703–714

    Article  Google Scholar 

  • Bates SS, Platt, T (1984) Fluorescence induction as a measure of photosynthetic capacity: response of Thalassiosira pseudonana (Bacillariophyceae) and Dunaliella tertiolecta (Chlorophyceae). Mar Ecol Prog Ser 18:67–77

    Article  Google Scholar 

  • Bates SS, Platt T (1985) Fluorescence induction of chlorophyll a in the Sargasso Sea and on the Grand Banks: correlation with photosynthetic capacity. Mar Ecol Prog Ser 27:29–38

    Article  Google Scholar 

  • Bennoun P (1982) Evidence for a respiratory chain in the chloroplast. Proc Nat Acad Sci USA 79:4352–4356

    Article  Google Scholar 

  • Biggins J, Bruce D (1989) Regulation of excitation energy transfer in organisms containing phycobilins. Photosynth Res 20:1–34

    Article  Google Scholar 

  • Bjorkman O, Demmig B (1987) Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77K among vascular plants of diverse origins. Planta 170:489–504

    Article  Google Scholar 

  • Boardman, NK (1977) Comparative photosynthesis of sun and shade plants. Ann Rev Plant Physiol 28:355–377

    Article  Google Scholar 

  • Bradbury M, Baker NR (1984) A quantitative determination of photochemical and nonphotochemical quenching during the slow phase of the chlorophyll fluorescence induction curve of bean leaves. Biochim Biophys Acta 765:275–281

    Article  Google Scholar 

  • Bryant DA (1986) The cyanobacterial photosynthetic apparatus: comparison of those of higher plants and photosynthetic bacteria. Can Bull Fish Aquatic Sci 214:423–500.

    Google Scholar 

  • Butler WL (1978) Energy distribution in the photochemical apparatus of photosynthesis. Ann Rev Plant Physiol 29:345–378

    Article  Google Scholar 

  • Campbell JW, Yentsch CM (1989) Variance within homogeneous phytoplankton populations: analysis of clonal cultures. Cytometry 10:596–604

    Article  Google Scholar 

  • Campbell JW, Yentsch CM, Cucci TL (1989) Variance within homogeneous phytoplankton populations, III: analysis of natural populations. Cytomerty 10:605–611

    Article  Google Scholar 

  • Campillo AJ, Shapiro SL (1978) Picosecond fluorescence studies of exciton migration and annihilation in photosynthetic systems. A review. Photochem Photobiol 28:975–1013

    Article  Google Scholar 

  • Chisholm SW, Olson RJ, Zettler ER, Goericke R, Waterbury JB, Welschmeyer NA (1988) A novel free-living prochlorophyte abundant in the oceanic euphotic zone. Nature 334:340–343

    Article  Google Scholar 

  • Clayton RK (1980) Photosynthesis: Physical Mechanisms and Chemical Patterns. Cambridge University Press, Cambridge, London, New York

    Google Scholar 

  • Cleveland JS, Perry MJ (1987) Quantum yield, relative specific absorption and fluorescence in nitrogen-limited Chaetoceros gracilis. Mar Biol 94:489–497

    Article  Google Scholar 

  • Cleveland JS, Bidigare RR, Perry MJ (1989) Maximum quantum yield of photosynthesis in the northwestern Sargasso Sea. J Mar Res 47:869–886.

    Article  Google Scholar 

  • Cullen JJ, Renger EH (1979) Continuous measurement of the DCMU-enhanced fluorescence response of natural phytoplankton populations. Mar Biol 53:13–20

    Article  Google Scholar 

  • Cullen JJ, Yentsch CM, Cucci, TL, MacIntyre HL (1988) Autofluorescence and other optical properties as tools in biological oceanography. Proc SPIE 925:149–156

    Google Scholar 

  • Demers S, Davis K, Cucci TL (1989) A flow cytometric approach to assessing the environmental and physiological status of phytoplankton. Cytometry 10:644–652

    Article  Google Scholar 

  • Demmig B, Winter K, Kruger A, Czygan F-C (1987) Photoinhibition and zeaxanthin formation in intact leaves. A possible role of the xanthophyll cycle in the dissipation of excess light energy. Plant Physiol 84:218–224

    Article  Google Scholar 

  • Demmig-Adams B (1990) Carotenoids and photoprotection in plants: a role for the xanthophyll zeaxanthin. Biochim Biophys Acta 1020:1–24

    Article  Google Scholar 

  • Diner B (1986) The reaction center of photosystem II. In Staehelin AL, Arntzen CJ, eds. Encyclopedia of Plant Physiology, New Series vol 19. Springer-Verlag, Berlin pp. 422–436

    Google Scholar 

  • Falkowski PG, Kiefer DA (1985) Chlorophyll a fluorescence in phytoplankton: relationship to photosynthesis and biomass. J Plankton Res 7:715–731

    Article  Google Scholar 

  • Falkowski PG, Owens TG, Ley AC, Mauzerall DC (1981) Effects of growth irradiance levels on the ratio of reaction centers in two species of marine algae. Plant Physiol 68:969–973

    Article  Google Scholar 

  • Falkowski PG, Wyman K, Ley A, Mauzerall D (1986) Relationship of steady state photosynthesis to fluorescence in eucaryotic algae. Biochim Biophys Acta 849:183–192

    Article  Google Scholar 

  • Falkowski PG, Kolber Z, Fujita Y (1988) Effect of redox state on the dynamics of photosystem II during steady state photosynthesis in eucaryotic algae. Biochim Biophys Acta 933:432–443

    Article  Google Scholar 

  • Fork DC, Satoh K (1986) The control by state transitions of the distribution of excitation energy in photosynthesis. Ann Rev Plant Physiol 37:335–261

    Article  Google Scholar 

  • Foyer C, Furbank R, Harbinson J, Horton P (1990) The mechanism contributing to photosynthetic control of electron transport by carbon assimilation in leaves. Photosynth Res 25:83–100

    Article  Google Scholar 

  • Iturriaga R, Siegel DA (1989) Microphotometric characterization of phytoplankton and detrital absorption properties in the Sargasso Sea. Limnol Oceanogr 34:1706–1726

    Article  Google Scholar 

  • Heath MR (1988) Interpretation of in vivo fluorescence and cell division rates of natural phytoplankton using a cell cycle model. J Plankton Res 10:1251–1272

    Article  Google Scholar 

  • Herzig R, Falkowski PG (1989) Nitrogen limitation of Isochrysis ganbana 1. Photosynthetic energy conversion and growth efficiencies. J Phycol 25:462–471

    Article  Google Scholar 

  • Hinton J, Rigs E, Jaworski G (1989) Algal identification using in vivo fluorescence spectra. J Plankton Res 11:65–74

    Article  Google Scholar 

  • Holmes JJ, Weger HG, Turpin DH (1989) Chlorophyll a fluorescence predicts total photosynthetic electron flow to CO2 or NO3 −/NO2 − under transient conditions. Plant Physiol 91:331–337

    Article  Google Scholar 

  • Holzwarth AR (1987) A model for the functional antenna organization and energy distribution in the photosynthetic apparatus of higher plants and green algae. In: Biggins J (ed) Progress in Photosynthesis Research, vol I. Nijhoff, Dordrecht, p53

    Google Scholar 

  • Keller AA (1987) Mesocosm studies of DCMU-enhanced fluorescence as a measure of phytoplankton photosynthesis. Mar Biol 96:107–114

    Article  Google Scholar 

  • Kirk JTO (1983) Light and Photosynthesis in Aquatic Ecosystems. Cambridge University Press, Cambridge, London, New York

    Google Scholar 

  • Kolber Z, Wyman KD, Falkowski PG (1990) Natural variability of photosynthetic energy conversion efficiency: a filed study in the Gulf of Maine. Limnol Oceanogr 35:72–79

    Article  Google Scholar 

  • Kolber Z, Zehr J, Falkowski PG (1988) Effects of growth irradiance and nitrogen limitation on photosynthetic energy conversion in photosystem II. Plant Physiol 88:923–929

    Article  Google Scholar 

  • Kyle DJ, Ohad I (1986) The mechanism of photoinhibition in higher plants and green algae. In Staehelin AL, Arntzen CJ, eds. Encyclopedia of Plant Physiology, New Series vol 19. Springer-Verlag, Berlin pp. 468–475

    Google Scholar 

  • Laasch H (1987) Non-photochemical quenching of chlorophyll a fluorescence in isolated chloroplasts under conditions of stressed photosynthesis. Planta 171:220–226

    Article  Google Scholar 

  • Ley AC (1980) The distribution of light energy for algal photosynthesis. In Falkowski PG, ed., Primary Productivity in the Sea. Plenum, New York, pp.59–82

    Google Scholar 

  • Lakowicz JR (1986) Principles of Fluorescence Spectroscopy, 3rd edn. Plenum, New York

    Google Scholar 

  • Lavorel J, Etienne A-L (1977) In vivo chlorophyll fluorescence. In Barber J, ed. Primary Processes of Photosynthesis, Elsevier, Amsterdam pp.203–268

    Google Scholar 

  • Legendre L, Yentsch CM (1989) Overview of flow cytometry and image analysis in biological oceanography and limnology. Cytometry 10:501–510

    Article  Google Scholar 

  • Loftus ME, Seliger HH (1975) Some limitation of the in vivo fluorescence technique. Chesapeake Sci 16:79–92

    Article  Google Scholar 

  • Lorenzen CJ (1966) A method for continuous measurement of in vivo chlorophyll concentration. Deep-Sea Res 13:223–227

    Google Scholar 

  • Malkin S, Armond PA, Mooney HC, Fork DC (1981) Photosystem II photosynthetic unit sizes from fluorescence induction in leaves. Plant Physiol 67:570–579

    Article  Google Scholar 

  • Miller AG, Espie GS, Canvin DT (1988) Chlorophyll a fluorescence yield as a monitor of both active CO2 and HCO3 − transport by the cyanobacterium Synechococcus UTEX 625. Plant Physiol 86:655–658

    Article  Google Scholar 

  • Neale PJ (1987) Algal photoinhibition and photosynthesis in the aquatic environment. In Kyle D et al, eds. Photoinhibition, Elsevier, Amsterdam

    Google Scholar 

  • Neale PJ, Cullen JJ, Yentsch CM (1989) Bio-optical inferences from chlorophyll a fluorescence: What kind of fluorescence is measured in flow cytometry? Limnol Oceanogr 34:1739–1748

    Article  Google Scholar 

  • Olson RJ, Vaulot D, Chisholm SW (1985) Marine phytoplankton distributions measured using shipboard flow cytometry. Deep-Sea Res 32:1173–1180

    Article  Google Scholar 

  • Olson RJ, Chisholm SW, Zettler ER, Armbrust EV (1988) Analysis of Synechococcus pigment types in the sea using single and dual beam flow cytometry. Deep-Sea Res 35:425–440

    Article  Google Scholar 

  • Olson RJ, Chisholm SW, Zettler ER, Armbrust EV (1989a) Pigments, size and distribution of Synechococcus in the North Atlantic and Pacific Oceans. Limnol Oceanogr 35:45–58

    Article  Google Scholar 

  • Olson RJ, Zettler ER, Anderson OK (1989b) Discrimination of eukaryotic phytoplankton cell types from light scatter and autofluorescence properties measured by flow cytometry. Cytometry 10:636–643

    Article  Google Scholar 

  • Ort DR (1986) Energy transduction in oxygenic photosynthesis: an overview of structure and mechanism. In Staehelin AL, Arntzen CJ, eds. Encyclopedia of Plant Physiology, New Series vol 19. Springer-Verlag, Berlin pp. 143–196

    Google Scholar 

  • Owens TG (1986) Photosystem II heterogeneity in the marine diatom Phaeodactylum tricornutum. Photochem Photobiol 43:535–544

    Article  Google Scholar 

  • Owens TG (1988) Light-harvesting antenna systems in the chlorophyll a/c-containing algae. In Stevens SE and Bryant DA, eds. Light-Energy Transduction in Photosynthesis: Higher Plant and Bacterial Models. American Society of Plant Physiologists, Bethesda, pp. 122–136)

    Google Scholar 

  • Owens TG, Gallagher JC, Alberte RS (1987) Photosynthetic light-harvesting function of violaxanthin in Nannochloropsis spp. (Eustigmatophyceae). J Phycol 23:79–85

    Google Scholar 

  • Owens TG, Webb SP, Mets L, Alberte RS, Fleming GR (1987) Antenna size dependence of fluorescence decay in the core antenna of photosystem I. Experimental estimates of charge separation and energy transfer rates. Proc Nat Acad Sci USA 84:1532–1536

    Article  Google Scholar 

  • Perry MJ, Porter SM (1989) Determination of the cross-section absorption coefficient of individual phytoplankton cells b analytical flow cytometry. Limnol Oceanogr 34:1727–1738

    Article  Google Scholar 

  • Petit PX, Diolez P, de Kouchkovsky Y (1989) Flow cytometric analysis of energy transducing organelles: mitochondria and chloroplasts. In: Yen A (ed) Flow Cytometry: Advanced Research and Clinical Applications, vol. I. CRC Press, Boca Raton, p 271

    Google Scholar 

  • Roy S, Legendre L (1979) DCMU-enhanced fluorescence as an indicator of photosynthetic activity in phytoplankton. Mar Biol 55:93–101

    Article  Google Scholar 

  • Samuelsson G, Oquist G (1977) a method for studying photosynthetic capacity of unicellular algae based on in vivo chlorophyll fluorescence. Physiol Plant 40:315–319

    Article  Google Scholar 

  • Schatz GH, Brock H, Holzwarth AR (1988) A kinetic and energetic model for the primary processes in photosystem II. Biophys J 54:397–405

    Article  Google Scholar 

  • Schreiber U (1983) Chlorophyll fluorescence yield changes as a tool in plant physiology. I. The measuring system. Photosynth Res 4:261–272

    Google Scholar 

  • Schreiber U (1986) Detection of rapid induction kinetics with a new type of high frequency modulated chlorophyll fluorometer. Photosynth Res 9:261–272

    Article  Google Scholar 

  • Schreiber U, Schliwa U, Bilger W (1986) Continuous recording of photochemical and nonphotochemical chlorophyll fluorescence quenching with a new type of modulation fluorometer. Photosynth Res 10:51–62

    Article  Google Scholar 

  • Sharkey TD, Stitt M, Heineke D, Gerhardt R, Raschke K, Heldt HW (1986) Limitation of photosynthesis by carbon metabolism. II: O2-insensitive CO2 uptake results from limitation of triose phosphate utilization. Plant Physiol 81:1123–1129

    Article  Google Scholar 

  • Sivak MN, Walker DA (1985) Chlorophyll a fluorescence: can it shed light on fundamental questions in photosynthetic carbon metabolism? Plant Cell Environ 8:439–448

    Article  Google Scholar 

  • Sivak MN, Walker DA (1986) Photosynthesis in vivo can be limited by phosphate supply. New Phytol 102:499–512

    Article  Google Scholar 

  • Sosik HM, Chisholm SW, Olson RJ (1989) Chlorophyll fluorescence from single cells: interpretation of flow cytometric signals. Limnol Oceanorg 34:1749–1761

    Article  Google Scholar 

  • Stransky H, Hager A (1970) The carotenoid pattern and the occurrence of the light-induced xanthophyll cycle in various classes of marine algae. Archiv Mikrobiol 73:315–323

    Article  Google Scholar 

  • Stitt M (1986) Limitations of carbon metabolism. I. Evidence for excess electron transport capacity in leaves carrying out photosynthesis in saturating light. Plant Physiol 81:1114–1122

    Article  Google Scholar 

  • Sukenik A, Bennett J, Falkowski PG (1987) Light-saturated photosynthesis — limitation by electron transport or carbon fixation? Biochim Biophys Acta 891:205–215

    Article  Google Scholar 

  • Therriault J-C, Booth D, Legendre L, Demers S (1990) Phytoplankton photoadaptation to vertical excursion as estimated by an in vivo fluorescence ratio. Mar Ecol Prog Ser 60:97–111

    Article  Google Scholar 

  • Thornber JP (1986) Biochemical characterization and structure of pigment-proteins of photosynthetic organisms. In Staehelin AL, Arntzen CJ, eds. Encyclopedia of Plant Physiology, New Series vol 19. Springer-Verlag, Berlin pp. 98–142

    Google Scholar 

  • Trautman JK, Shreve AP, Owens TG, Albrecht AC (1990) Femtosecond dynamics of carotenoid to chlorophyll energy transfer in thylakoid membrane preparations from Phaeodactylum tricornutum and Nannochloropsis sp.. Chem Phys Lett 166:369–374.

    Article  Google Scholar 

  • Turpin DH, Bruce D (1990) Regulation of photosynthetic light harvesting by nitrogen assimilation in the green alga Selenastrum minutum. FEBS Lett 263:99–103

    Article  Google Scholar 

  • van Kooten O, Snel JFH (1990) The use of chlorophyll fluorescence nomenclature in plant stress physiology. Photosynth Res 25:147–150

    Article  Google Scholar 

  • Vincent WF (1980) Mechanisms of rapid photosynthetic adaptation in natural phytoplankton communities: changes in photochemical capacity as measured by DCMU-induced chlorophyll fluorescence. J Phycol 16:568–577

    Article  Google Scholar 

  • Walters RG, Horton P (1990) The use of light pulses to investigate the relaxation in the dark of chlorophyll fluorescence quenching in barley leaves. In: Baltscheffsky M (ed) Current Research in Photosynthesis, vol. I, Kluwer, Dordrecht, p631

    Google Scholar 

  • Weis E, Berry JA (1987) Quantum efficiency of photosystem II in relation to ‘energy’-dependent quenching of chlorophyll fluorescence. Biochim Biophys Acta 894:198–208

    Article  Google Scholar 

  • Welschmeyer NA, Lorenzen CJ (1981) Chlorophyll-specific photosynthesis and quantum efficiency at subsaturating light intensities. J Phycol 17:283–293

    Article  Google Scholar 

  • Yentsch CM, Campbell JW (1991) Phytoplankton growth: perspectives gained by flow cytometry. J Plankton Res 13 (supplement):83–108

    Article  Google Scholar 

  • Yentsch CS, Yentsch CM (1979) Fluorescence spectral signatures: the characterization of phytoplankton populations by the use of excitation and emission spectra. J Mar Res 37:471–483

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Owens, T.G. (1991). Energy Transformation and Fluorescence in Photosynthesis. In: Demers, S. (eds) Particle Analysis in Oceanography. NATO ASI Series, vol 27. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-75121-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-75121-9_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-75123-3

  • Online ISBN: 978-3-642-75121-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics