Skip to main content

From the Ocean to Cells: Coccolithophore Optics and Biogeochemistry

  • Chapter
Particle Analysis in Oceanography

Part of the book series: NATO ASI Series ((ASIG,volume 27))

Abstract

The detection of extensive areas of highly reflective ocean waters by satellite visible-band radiometers, including the Landsat MSS (Gower et al., 1980), the Nimbus-7 Coastal Zone Color Scanner (CZCS) (Holligan et al., 1983) and the NOAA Advanced Very High Resolution Radiometer (AVHRR) (Groom and Holligan, 1987), and the identification of blooms of coccolithophores as the cause of the reflectance (Holligan et al., 1983; Balch et al., 1991) has led to renewed interest in the optical properties of this group of phytoplankton as well as in their ecology and biogeochemistry. The coccolithophores typically have complex life histories (Hibberd, 1980) which include a non-motile, planktonic phase characterised by external plates, or coccoliths, of calcium carbonate (Green, 1986; Westbroek et al., 1989). It is the backscattering of light by the coccoliths attached to the cells or detached in the water that is detected by the satellite sensors. This phenomenon is well known to sailors and fishermen as “white water”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ackleson SG, Balch WM, Holligan PM (1988) White waters of the Gulf of Maine. Oceanography 1 (2): 18–22

    Google Scholar 

  • Aiken J, Bellan I (1990) Optical oceanography: an assessment of a towed method. In: Herring PJ, Campbell AK, Whitfield M and Maddock L (eds) Light and life in the sea. Cambridge University Press pp 39–57

    Google Scholar 

  • Andreae MO (1986) The ocean as a source of atmospheric sulfur compounds pp 331–362. In P Buat-Menard (ed). The Role of Air-sea Exchange in Geochemical Cycling. NATO ASI Series C Vol 185. D Reidel Publishing Company, Dordrecht

    Google Scholar 

  • Balch WM, Eppley RW, Abbott MR, Reid FM (1989) Bias in satellite derived pigment measurements due to coccolithophores and dinoflagellates. J Plank Res 11:575–581

    Article  Google Scholar 

  • Balch WM, Holligan PM, Ackleson SG, Voss KJ (1991) Biological and optical properties of mesoscale coccolithophore blooms in the Gulf of Maine. Limnol Oceanogr (in press) Baumann FG, Isenberg HD, Gennaro J (1978) The inverse relationship between nutrient nitrogen concentration and coccolith calcification in cultures of the coccolithophorid Hymenomonas sp J Protozool 25:253–256

    Google Scholar 

  • Berger WH (1982) Deglacial CO2 buildup: Constraints on the coral reef model. Palaeogeog Palaeoclim Palaeoecol 40:235–253

    Article  Google Scholar 

  • Berner RA (1982) Burial of organic carbon and pyrite sulfur in the modern ocean: Its geochemical and environmental significance. Am J Sci 282:415–473

    Google Scholar 

  • Berner RA, Lasaga AC (1989) Modeling the geochemical carbon cycle. Sci Am 260:54–61

    Article  Google Scholar 

  • Bishop JKB (1989) Regional extremes in particulate matter composition and flux: Effects on the chemistry of the ocean interior. In Productivity of the Ocean: Past and Present. Eds Berger WH, Smetacek VS and Wefer G. pp 117–137. John Wiley & Sons Ltd

    Google Scholar 

  • Borowitzka MA (1987) Calcification in algae: mechanisms and the role of metabolism. CRC Crit Rev Pl Sci 6:1–45

    Article  Google Scholar 

  • Bramlette MN (1958) Significance of coccolithophorids in calcium carbonate deposition. Bull Geol Soc Am 69:121–12.

    Article  Google Scholar 

  • Brand LE (1982) Genetic variability and spatial patterns of genetic differentiation in reproductive rates of the marine coccolithophores Emiliania huxleyi and Gephyrocapsa oceanica. Limnol Oceanogr 27:236–245

    Article  Google Scholar 

  • Brand LE, Sunda WG, Guillard RRL (1983) Limitation of marine phytoplankton reproductive rates by zinc, manganese and iron. Limnol Oceanogr 28:1182–1198

    Article  Google Scholar 

  • Brasseil SC, Eglinton G, Marlowe IT, Pflaumann U and Sarntheim M (1986) Molecular stratigraphy: a new tool for climatic assessment. Nature 320:129–133

    Article  Google Scholar 

  • Bricaud A, Morel A (1986) Light attenuation and scattering by phytoplanktonic cells: a theoretical modelling. Appl Opt 25:571–580

    Article  Google Scholar 

  • Broecker WS, Peng TH (1989) The cause of the glacial to interglacial atmospheric CO2 change: a polar alkalinity hypothesis. Global Biogeochemical Cycles 3:215–239

    Article  Google Scholar 

  • Cadee GC (1985) Macroaggregates of Emiliania hwcleyi in sediment traps. Mar Ecol Prog Ser 24:193–196

    Article  Google Scholar 

  • Chamberlin TC (1898) The influence of great epochs of limestone formation upon the constitution of the atmosphere. J Geol 6:609–621

    Article  Google Scholar 

  • Charlson RJ, Lovelock JE, Andreae MO, Warren SG (1987) Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate. Nature 326:655–661

    Article  Google Scholar 

  • Dacey JWH, Wakeham SG (1986) Oceanic dimethylsulfide: Production during Zooplankton grazing on phytoplankton. Science 233:1314–1316

    Article  Google Scholar 

  • Degens ET, Ittekkot V (1986) Ca2+-stress, biological response and particle aggregation in the aquatic habitat. Neth J Sea Res 20:109–116

    Article  Google Scholar 

  • Dickson DMJ, Kirst GO (1987) Osmotic adjustment in marine eukaryotic algae: The role of inorganic ions, quaternary ammonium, tertiary sulfonium and carbohydrate solutes. II. Prasinophytes and haptophytes. New Phytol 106:657–666

    Article  Google Scholar 

  • Dixon GK, Brownlee C, Merrett MJ (1989) Measurement of internal pH in the coccolithophore Emiliania hwcleyi using 2’ 7’-bis-(2-carboxyethyl)-5(and -6) carboxyfluoroscein acetoxymethylester and digital imaging microscopy. Planta 178:443–449

    Article  Google Scholar 

  • Dupouy C, Demercq H (1987) CZCS as an aid for understanding modalities of the plankton productivity during upwelling off Senegal. Adv Space Res 7:63–71

    Article  Google Scholar 

  • Dymond J, Lyle M (1985) Flux comparisons between sediments and sediment traps in the eastern tropical Pacific: Implications for atmospheric CO2 variations during the Pleistocene. Limnol Oceanogr 30:699–712

    Article  Google Scholar 

  • Fukushima H, Hiramatsu K, Sugimori Y (1987) CZCS derived pigment concentration fields in a Japanese coastal area. Adv Space Res 7:79–82

    Article  Google Scholar 

  • Gallois RW (1976) Coccolith blooms in the Kimmeridge clay and the origin of North Sea oil. Nature 259:473–475

    Article  Google Scholar 

  • Gordon AS, Millero FJ (1985) Adsorption mediated decrease in the biodegradation rate of organic compounds. Microb Ecol 11:289–298

    Article  Google Scholar 

  • Gordon HR, Brown OB, Evans RH, Brown JW, Smith RC, Baker KS, Clark DK (1988) A semianalytical radiance model of ocean color. J Geophys Res 93:10909–10924

    Article  Google Scholar 

  • Gower JFR, Denman KL, Holyer RJ (1980) Phytoplankton patchiness indicates the fluctuation spectrum of mesoscale oceanic structure. Nature 288:157–159

    Article  Google Scholar 

  • Green JC (1986) Biomineralization in the algal class Prymnesiophyceae. In Leadbetter B and Riding R (eds) Biomineralization of Lower Plants and Animals. Clarendon Press Oxford pp 173–188

    Google Scholar 

  • GREPMA (1988) Satellite (AVHRR/NOAA-9) and ship studies of a coccolithophorid bloom in the western English Channel. Mar Nature 1:1–1

    Google Scholar 

  • Groom SB, Holligan PM (1987) Remote sensing of coccolithophore blooms. Adv Space Res 7:73–78

    Article  Google Scholar 

  • Haxo FT (1985) Photosynthetic action spectrum of the coccolithophorid Emiliania hwcleyi (Haptophyceae): 19′ Hexanoyloxyfucoxanthin as antenna pigment. J Phycol 21:282–287

    Article  Google Scholar 

  • Hay BJ, Honjo, S Kempe S, Ittekot VA, Degens ET, Konuk T, Izdar E (1990) Interannual variability in particle flux in the southwestern Black Sea. Deep Sea Res 37:911–928

    Article  Google Scholar 

  • Hibberd DJ (1980) Prymnesiophytes (=Haptophytes). In: Cox E (ed). Phytoflagellates Elsevier pp 273–317

    Google Scholar 

  • Holligan PM, Aarup T, Groom SB (1989) The North Sea: Satellite colour atlas. Contin Shelf Res 9:667–765

    Article  Google Scholar 

  • Holligan PM, Viollier M, Harbour DS, Camus P, Champagne-Phillipe M (1983) Satellite and ship studies of coccolithophore production along a continental shelf edge. Nature 304:339–342

    Article  Google Scholar 

  • Honjo S (1976) Coccoliths: Production, transportation and sedimentation. Mar Micropaleont 1:65–79

    Article  Google Scholar 

  • Keller MD, Bellows WK, Guillard RRL (1989) Dimethyl sulphide production in marine phytoplankton. In Biogenic Sulphur in the Environment. Eds Saltzman ES and Cooper WJ. American Chemical Society Symposium Series 393, ACS Washington pp 167–182

    Chapter  Google Scholar 

  • Kempe S, Jennerjahn TC (1988) The vertical particle flux in the northern North Sea, its seasonality and composition. Mitt Geol-Palaont Inst Univ Hamburg 65:229–268

    Google Scholar 

  • Kiene RP, Bates TS (1990) Biological removal of dimethyl sulphide from sea water, Nature 345:702–705

    Article  Google Scholar 

  • Kirk JTT (1988) Solar heating of water bodies as influenced by their optical properties. J Geophys Res 93:10897–10908

    Article  Google Scholar 

  • Klaveness D, Paasche E (1979) Physiology of coccolithophorids. In: Levandowski M and Hutner SH (eds) Biochemistry and Physiology of Protozoa (2nd edition) Vol 1 Academic Press

    Google Scholar 

  • Kramer DJ, Ryther JH (1960) The iron requirement of some marine phytoplankton. Biol Bull 119:324

    Google Scholar 

  • Legrand MR, Delmas RJ, Charlson RJ (1988) Climate forcing implications from Vostok ice-core sulphate data. Nature 334:418–420

    Article  Google Scholar 

  • Lewis MR, Cullen JJ, Platt T (1983) Phytoplankton and thermal structure in the upper ocean: Consequences of nonuniformity in chlorophyll profile. J Geophys Res 88:2565–2570

    Article  Google Scholar 

  • Lovelock JE (1986) Geophysiology: A new look at Earth Science. Bull Am Meteorol Soc 67:392–397

    Google Scholar 

  • Margalef R (1978) Life-forms of phytoplankton as survival alternatives in an unstable environment. Oceanol Acta 1:493–509

    Google Scholar 

  • Martin JH (1990) Glacial-interglacial CO2 change: The iron hypothesis. Palaeoceanography 5:1–13

    Article  Google Scholar 

  • Milliman JD, Takahashi K (1990) Carbonate and opal production and accumulation in the ocean. In Global Surficial Geofluxes: Modern to Glacial. Eds Usselman TM, Hay W and Meybeck M. National Academy Press USA. In press

    Google Scholar 

  • Petit JR, Mounier L, Jouzel J, Korotkevich YS, Kotlyakov VI, Lorius C (1990) Palaeoclimatological and chronological implications of the Vostok core dust record. Nature 443:56–58

    Article  Google Scholar 

  • Prahl FG, de Lange GJ, Lyle M, Sparrow MA (1989) Post depositional stability of long-chain alkenones under contrasting redox conditions. Nature 341:434–437

    Article  Google Scholar 

  • Romankevich EA (1984) Geochemistry of Organic Matter in the Ocean. Springer-Verlag 334 pp

    Google Scholar 

  • Roth PH (1987) Mesozoic calcareous nannofossil evolution: Relation to paleoceanographic events. Paleoceanography, 2:601–611

    Article  Google Scholar 

  • Ruddiman WF, Mclntyre A (1981) The North Atlantic during the last deglaciation. Palaeogeog Palaeoclimat Palaeoecol 35:145–214

    Article  Google Scholar 

  • Ruddiman WF, Molfino B, Esmay A, Pokras E (1980) Evidence bearing on the mechanism of rapid deglaciation. Clim Change 3:65–87

    Article  Google Scholar 

  • Shapiro LP, Campbell L, Haugen EM (1989) Immunochemical recognition of phytoplankton species. Mar Ecol Prog Ser 57:219–224

    Article  Google Scholar 

  • Sikes CS, Fabry VJ (1990) Photosynthesis and CaCO3 deposition, coccolithophorids and the global carbon cycle. In photosynthetic Carbon Metabolism and Regulation of Atmospheric CO2 and O2. Eds NE Tolbert and J Preiss. In press

    Google Scholar 

  • Sikes CS, Wilbur KM (1982) Functions of coccolith formation. Limnol Oceanogr 27:18–26

    Article  Google Scholar 

  • Slingo A (1990) Sensitivity of the Earth’s radiation budget to changes in low clouds. Nature 343:49–51

    Article  Google Scholar 

  • Stavn RA (1987) The three-parameter model of the submarine light field: Radiant energy absorption and trapping in nepheloid layers recalculated. J Geophys Res 92:1934–1936

    Article  Google Scholar 

  • Suess E (1973) Interaction of organic compounds with calcium carbonate — II. Organo-carbonate association in recent sediments. Geochim Cosmochim Acta 37: 2435–2447

    Article  Google Scholar 

  • Taylor AH, Watson AJ, Ainsworth M, Robertson JE, Turner DR (1991) A modelling investigation of the role of phytoplankton in the balance of carbon at the surface of the North Atlantic. Global Biogeochem Cycles (in Press)

    Google Scholar 

  • Turner SM, Malin G, Liss P, Harbour DS, Holligan PM (1988) The seasonal variations of dimethylsulphonioproprionate concentrations in near shore waters. Limnol Oceanogr 33:364–375

    Article  Google Scholar 

  • Van Leeuwe MA (1990) Heat generation in aquatic media containing scattering particles: theory, and measurements in Emiliania hyxleyi cultures (Coccolithophorids). Unpubl ms Groningen, The Netherlands

    Google Scholar 

  • Volk T (1989) Sensitivity of climate and atmospheric CO2 to deep-ocean and shallow-ocean carbonate burial. Nature 337:637–638

    Article  Google Scholar 

  • Westbroek P, Young PR, Linschooten K (1989) Coccolith production (biomineralization) in the marine alga Emiliania hucleyi. J Protozool 36:368–373

    Google Scholar 

  • Westbroek P, de Jong EW, van der Wal P, Borman T de Vrind JPM, van Emburg PE, Bosch L (1983) Calcification in coccolithophoridae — wasteful or functional? Environment Biogeochem Ecol Bull 35:291–299

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Holligan, P.M., Balch, W.M. (1991). From the Ocean to Cells: Coccolithophore Optics and Biogeochemistry. In: Demers, S. (eds) Particle Analysis in Oceanography. NATO ASI Series, vol 27. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-75121-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-75121-9_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-75123-3

  • Online ISBN: 978-3-642-75121-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics